当前位置:
X-MOL 学术
›
ACS Appl. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exploring the Physical Properties Related to Resistive Switching Events in HfO2-Based RRAM Devices with an Analytical Framework
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2023-01-06 , DOI: 10.1021/acsaelm.2c01350 Om Prakash Das 1 , Shivendra Kumar Pandey 1
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2023-01-06 , DOI: 10.1021/acsaelm.2c01350 Om Prakash Das 1 , Shivendra Kumar Pandey 1
Affiliation
Herein, the physical properties of HfO2 thin films such as crystal structure, chemical composition, transmissivity, and bandgap along with a comprehensive analytical model are investigated for resistive switching applications. The XPS measurements confirm the atomic percentage of 34.55% and 65.45% for hafnium and oxygen in the sputtered thin layer. The nonlattice oxygen in the oxide layer indicates the switching potential. Furthermore, the amorphous structure of the deposited HfO2 film is ensured from XRD scanning. The UV–vis spectroscopy study suggests a high transmittance of ∼91% in visible range with a direct bandgap of 5.6 eV. The electrical characterization of fabricated Cu/HfO2/W RRAM devices demonstrates largely Ohmic and partly space charge limited conduction with bipolar switching events at VSET = 0.6 V and VRESET = −0.6 V. An analytical model incorporating key physical processes such as filament growth/shrinkage and local temperature rise is engaged to demonstrate and validate the switching events. With an applied voltage, the local temperature rises from room temperature to 729 K, with simultaneous filament radial growth up to 5 nm. Moreover, the power signature is calculated, where an inverse correlation is observed between the activation power and device resistance during switching events, which is validated with the experimental data. These findings will be helpful for the development of HfO2-based RRAM devices for emerging memory applications.
中文翻译:
使用分析框架探索与基于 HfO2 的 RRAM 器件中电阻开关事件相关的物理特性
本文研究了 HfO 2薄膜的物理特性,例如晶体结构、化学成分、透射率和带隙,以及用于电阻开关应用的综合分析模型。XPS 测量证实溅射薄层中铪和氧的原子百分比分别为 34.55% 和 65.45%。氧化物层中的非晶格氧表示开关电位。此外,通过XRD扫描确保沉积的HfO 2膜的非晶结构。紫外-可见光谱研究表明,在可见光范围内的透射率高达 91%,直接带隙为 5.6 eV。制备的 Cu/HfO 2的电气特性/W RRAM 器件在V SET = 0.6 V 和V RESET = −0.6 V时通过双极开关事件展示了大部分欧姆和部分空间电荷限制传导。采用了包含灯丝生长/收缩和局部温度升高等关键物理过程的分析模型演示和验证开关事件。在施加电压的情况下,局部温度从室温升至 729 K,同时灯丝径向生长高达 5 nm。此外,还计算了功率特征,其中在开关事件期间观察到激活功率和器件电阻之间存在反相关,这已通过实验数据进行了验证。这些发现将有助于开发HfO 2用于新兴存储器应用的基于 RRAM 的器件。
更新日期:2023-01-06
中文翻译:
使用分析框架探索与基于 HfO2 的 RRAM 器件中电阻开关事件相关的物理特性
本文研究了 HfO 2薄膜的物理特性,例如晶体结构、化学成分、透射率和带隙,以及用于电阻开关应用的综合分析模型。XPS 测量证实溅射薄层中铪和氧的原子百分比分别为 34.55% 和 65.45%。氧化物层中的非晶格氧表示开关电位。此外,通过XRD扫描确保沉积的HfO 2膜的非晶结构。紫外-可见光谱研究表明,在可见光范围内的透射率高达 91%,直接带隙为 5.6 eV。制备的 Cu/HfO 2的电气特性/W RRAM 器件在V SET = 0.6 V 和V RESET = −0.6 V时通过双极开关事件展示了大部分欧姆和部分空间电荷限制传导。采用了包含灯丝生长/收缩和局部温度升高等关键物理过程的分析模型演示和验证开关事件。在施加电压的情况下,局部温度从室温升至 729 K,同时灯丝径向生长高达 5 nm。此外,还计算了功率特征,其中在开关事件期间观察到激活功率和器件电阻之间存在反相关,这已通过实验数据进行了验证。这些发现将有助于开发HfO 2用于新兴存储器应用的基于 RRAM 的器件。