Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-01-04 , DOI: 10.1016/j.cej.2023.141329 Bi Luo , Weigang Wang , Qi Wang , Weijie Ji , Guihui Yu , Zihang Liu , Zaowen Zhao , Xiaowei Wang , Shubin Wang , Jiafeng Zhang
Composite polymer electrolyte is viewed as one of the most competitive systems for the next generation in electrolytes for solid-state Li-metal batteries, owing to its favorable flexibility, favoring interfacial contact and low cost. However, the composite polymer electrolyte suffers from low ion conductivity and interfacial stability. Herein, we propose morphology and defect control strategies to successfully prepare oxygen vacancies-enriched 1D-structured TiO2 fillers to optimum ionic conductivity and interfacial strength of the CPEs. Various electrochemical characterizations and density functional theory (DFT) calculations reveal that the induced oxygen vacancies on the TiO2 surface help dissociate LiTFSI and produce more free Li ions. Notably, the 1D-structured TiO2 microrods not only act as a solid plasticizer to increase the amorphous phases of PEO matrix but also provide continuous interaction surfaces for strong anion adsorption to promote homogenous environment and ensure interfacial stability. Benefiting from this novel design, the symmetric Li//Li cell exhibits an ultra-long lifespan stable cycling over 1000 h at 0.2 mA cm-2. Besides, solid-state lithium metal batteries with LiFePO4 cathode exhibit superior cyclability (162.4 mAh g-1 at 0.33 C after 200 cycles) and rate capability (132 mAh g-1 at 2 C). This work provides a promising strategy of conduction structures for delicately designing advanced solid-state electrolytes, demonstrating the promise of developing all-solid-state Li-metal batteries.
中文翻译:
通过用于复合聚合物电解质的富含氧空位的 TiO2 微棒促进离子电导率和界面稳定性
复合聚合物电解质被认为是下一代固态锂金属电池电解质中最具竞争力的体系之一,因为它具有良好的柔韧性、有利于界面接触和低成本。然而,复合聚合物电解质存在离子电导率和界面稳定性低的问题。在此,我们提出了形态学和缺陷控制策略,以成功制备富含氧空位的一维结构 TiO 2填料,以优化 CPE 的离子电导率和界面强度。各种电化学表征和密度泛函理论 (DFT) 计算表明,TiO 2表面上诱导的氧空位有助于离解 LiTFSI 并产生更多的游离锂离子。值得注意的是,一维结构的 TiO 2微棒不仅作为固体增塑剂增加 PEO 基体的非晶相,而且为强阴离子吸附提供连续的相互作用表面,促进均质环境并确保界面稳定性。受益于这种新颖的设计,对称的 Li//Li 电池在 0.2 mA cm -2下表现出超过 1000 小时的超长寿命稳定循环。此外,具有 LiFePO 4阴极的固态锂金属电池表现出优异的循环性能( 200 次循环后在 0.33 C 下为162.4 mAh g -1 )和倍率性能(132 mAh g -1在 2 C)。这项工作为精细设计先进的固态电解质提供了一种有前途的传导结构策略,展示了开发全固态锂金属电池的前景。