当前位置:
X-MOL 学术
›
Chem. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operando characterization of continuous flow CO2 electrolyzers: current status and future prospects
Chemical Communications ( IF 4.3 ) Pub Date : 2023-01-04 , DOI: 10.1039/d2cc06065e
Dorottya Hursán 1 , Csaba Janáky 1
Chemical Communications ( IF 4.3 ) Pub Date : 2023-01-04 , DOI: 10.1039/d2cc06065e
Dorottya Hursán 1 , Csaba Janáky 1
Affiliation
![]() |
The performance of continuous-flow CO2 electrolyzers has substantially increased in recent years, achieving current density and selectivity (particularly for CO production) meeting the industrial targets. Further improvement is, however, necessary in terms of stability and energy efficiency, as well as in high-value multicarbon product formation. Accelerating this process requires deeper understanding of the complex interplay of chemical–physical processes taking place in CO2 electrolyzer cells. Operando characterization can provide these insights under working conditions, helping to identify the reasons for performance losses. Despite this fact, only relatively few studies have taken advantage of such methods up to now, applying operando techniques to characterize practically relevant CO2 electrolyzers. These studies include X-ray absorption- and Raman spectroscopy, fluorescent microscopy, scanning probe techniques, mass spectrometry, and radiography. Their objective was to characterize the catalyst structure, its microenviroment, membrane properties, etc., and relate them to the device performance (reaction rates and product distribution). Here we review the current state-of-the-art of operando methods, associated challenges, and also their future potential. We aim to motivate researchers to perform operando characterization in continuous-flow CO2 electrolyzers, to understand the reaction mechanism and device operation under practically relevant conditions, thereby advancing the field towards industrialization.
中文翻译:
连续流 CO2 电解槽的操作表征:现状和未来前景
近年来,连续流 CO 2电解槽的性能大幅提高,实现了满足工业目标的电流密度和选择性(特别是对于 CO 生产)。然而,就稳定性和能源效率以及高价值多碳产品的形成而言,进一步的改进是必要的。加速这一过程需要更深入地了解发生在 CO 2电解槽中的化学-物理过程的复杂相互作用。Operando表征可以在工作条件下提供这些见解,帮助确定性能损失的原因。尽管如此,到目前为止,只有相对较少的研究利用了这种方法,应用操作数表征实际相关的 CO 2电解槽的技术。这些研究包括 X 射线吸收和拉曼光谱、荧光显微镜、扫描探针技术、质谱和射线照相术。他们的目标是表征催化剂结构、微环境、膜特性等,并将它们与设备性能(反应速率和产物分布)联系起来。在这里,我们回顾了当前最先进的操作方法、相关挑战以及它们的未来潜力。我们的目标是激励研究人员在连续流动的 CO 2中进行原位表征电解槽,了解实际相关条件下的反应机理和装置操作,从而推动该领域走向工业化。
更新日期:2023-01-04
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
连续流 CO2 电解槽的操作表征:现状和未来前景
近年来,连续流 CO 2电解槽的性能大幅提高,实现了满足工业目标的电流密度和选择性(特别是对于 CO 生产)。然而,就稳定性和能源效率以及高价值多碳产品的形成而言,进一步的改进是必要的。加速这一过程需要更深入地了解发生在 CO 2电解槽中的化学-物理过程的复杂相互作用。Operando表征可以在工作条件下提供这些见解,帮助确定性能损失的原因。尽管如此,到目前为止,只有相对较少的研究利用了这种方法,应用操作数表征实际相关的 CO 2电解槽的技术。这些研究包括 X 射线吸收和拉曼光谱、荧光显微镜、扫描探针技术、质谱和射线照相术。他们的目标是表征催化剂结构、微环境、膜特性等,并将它们与设备性能(反应速率和产物分布)联系起来。在这里,我们回顾了当前最先进的操作方法、相关挑战以及它们的未来潜力。我们的目标是激励研究人员在连续流动的 CO 2中进行原位表征电解槽,了解实际相关条件下的反应机理和装置操作,从而推动该领域走向工业化。