当前位置: X-MOL 学术Adv. Opt. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic Properties of SrVO3 Bulk and Nanostructures
Advanced Optical Materials ( IF 8.0 ) Pub Date : 2023-01-02 , DOI: 10.1002/adom.202202415
Chia‐Ping Su 1 , Kari Ruotsalainen 2 , Alessandro Nicolaou 2 , Matteo Gatti 2, 3, 4 , Alexandre Gloter 1
Affiliation  

Correlated metals, such as SrVO3 (SVO) or SrNbO3, are promising materials for optical devices such as transparent conductors. Here, a real-space and reciprocal-space electron-energy-loss-spectroscopy (EELS) investigation of SVO bulk and nanostructures is reported. An intense 1.35 eV excitation with a weak energy dispersion is observed in the loss function and is attributed to a bulk plasmonic excitation from the 3d-t2g orbitals. Ab initio calculations done within a time-dependent density functional theory framework reveal that a 1.5 band renormalization is sufficient to reproduce quantitatively this d–d plasmon energy and dispersion. The corresponding localized surface plasmon (LSP) peaks are measured by EELS on various nanostructures and are compared to finite-difference time-domain simulations. These LSPs exhibit quality factors above canonical materials (e.g., indium tin oxide) in the near-infrared regime, demonstrating that SVO is also a material of high interest for plasmonic applications. Finally, by phasing out the surface plasmon contribution with EELS collected at minute off-dipolar conditions, the bulk-type plasmonic values are retrieved with nanometrical resolution. Core–shelled electronic structures are then observed for nanorods designed by focused ion beam (FIB), revealing a bandgap opening due to FIB damage. It is envisioned that similar bulk measurement can be feasible for most of the transition metal oxide nanostructures.

中文翻译:

SrVO3 块体和纳米结构的等离子体性质

相关金属,例如 SrVO 3 (SVO) 或 SrNbO 3,是用于光学器件(例如透明导体)的有前途的材料。在这里,报告了 SVO 块体和纳米结构的真实空间和倒易空间电子能量损失能谱 (EELS) 研究。在损失函数中观察到具有弱能量色散的 1.35 eV 强烈激发,这归因于来自 3d-t 2g的体等离子体激发轨道。在时间相关密度泛函理论框架内进行的从头算计算表明,1.5 波段重整化足以定量再现这种 d-d 等离子体能量和色散。相应的局域表面等离子体 (LSP) 峰由 EELS 在各种纳米结构上测量,并与有限差分时域模拟进行比较。这些 LSP 在近红外区域表现出高于标准材料(例如,氧化铟锡)的品质因数,表明 SVO 也是等离子体应用中非常受关注的材料。最后,通过在微小的非偶极条件下收集的 EELS 逐步消除表面等离子体激元的贡献,以纳米分辨率检索体型等离子体激元值。然后观察由聚焦离子束 (FIB) 设计的纳米棒的核壳电子结构,揭示由于 FIB 损伤导致的带隙开口。预计对于大多数过渡金属氧化物纳米结构,类似的整体测量是可行的。
更新日期:2023-01-02
down
wechat
bug