在这项工作中,亲水聚丙烯酰胺 (PAM) 接枝 ZnO 纳米粒子 (ZnO-g-PAM NPs) 被制备并嵌入到薄膜纳米复合材料 (TFN) 膜的聚酰胺 (PA) 排斥层中,以提高 FO 性能和渗透性-选择性和防污性能。ZnO-g-PAM 纳米填料通过原子转移自由基聚合 (ATRP) 技术制备,以增强纳米粒子在水性介质中的亲水性和高分散性。获得的混合纳米填料具有 ZnO 和 PAM 刷的优点,在 ZnO-g-PAM 修饰的 TFN 膜的 PA 结构中呈现 ZnO 的均匀分散。为了提高水通量和防污性能,将不同量(200、400 和 600 ppm)的 ZnO-g-PAM 纳米填料分散在 IP 过程的水相中。研究了 ZnO-g-PAM 浓度对 PA 薄层的亲水性、形态和粗糙度以及 TFN 膜的 FO 性能(水通量、反盐通量和膜选择性)的影响。此外,分别在横截面 FO 和死端 RO 系统中评估了 TFN 膜的防污倾向和固有特性。ZnO-g-PAM 纳米填料对 IP 工艺的影响会导致 PA 层的表面形貌、厚度和化学成分发生变化,从而提高防污性能。结果,制造的 TFN-ZP 分别在横截面 FO 和死端 RO 系统中评估了 TFN 膜的防污倾向和固有特性。ZnO-g-PAM 纳米填料对 IP 工艺的影响会导致 PA 层的表面形貌、厚度和化学成分发生变化,从而提高防污性能。结果,制造的 TFN-ZP 分别在横截面 FO 和死端 RO 系统中评估了 TFN 膜的防污倾向和固有特性。ZnO-g-PAM 纳米填料对 IP 工艺的影响会导致 PA 层的表面形貌、厚度和化学成分发生变化,从而提高防污性能。结果,制造的 TFN-ZP与 TFC (12.2 LMH) 和其他 TFN 膜相比, 400 个样本被证实具有最佳水通量 (20.5 LMH)。同时,盐逆通量 (2.5 gMH) 保持在最低水平。此外,PA 结构中 ZnO-g-PAM 纳米填料的高亲水性导致在 ZnO-g-PAM 改性的 PA 层上形成水化层,从而最大限度地减少结垢倾向。因此,本研究首次考虑在 TFN-FO 膜上实现 ZnO-g-PAM。
图形概要
"点击查看英文标题和摘要"
Polyacrylamide-grafted zinc oxide (ZnO-g-PAM) nanoparticles as a promising nanofiller for thin-film nanocomposite forward osmosis membranes
In this work, hydrophilic polyacrylamide (PAM)-grafted ZnO nanoparticles (ZnO-g-PAM NPs) were prepared and embedded into the polyamide (PA) rejection layer of a thin-film nanocomposite (TFN) membrane to improve the FO performance and perm-selectivity, and antifouling properties. ZnO-g-PAM nanofiller was prepared via atom transfer radical polymerization (ATRP) technique to enhance the nanoparticle hydrophilicity and high dispersibility in aqueous media. The obtained hybrid nanofiller participates in the advantageous of both ZnO and PAM brushes presents a uniform dispersion of ZnO in the PA structure of the ZnO-g-PAM-modified TFN membranes. To enhance the water flux and antifouling properties, different amounts (200, 400, and 600 ppm) of ZnO-g-PAM nanofiller was dispersed in the aqueous phase of the IP process. The effect of ZnO-g-PAM concentration on the hydrophilicity, morphology, and roughness of PA thin layer and FO performance (water flux, reverse salt flux, and membrane selectivity) of the TFN membranes were investigated. In addition, the antifouling tendency and intrinsic properties of the TFN membranes were evaluated in cross-section FO and dead-end RO systems, respectively. The effects of ZnO-g-PAM nanofiller on the IP process cause changes in surface morphology, thickness, and chemical composition of PA layer, improving the antifouling properties. As a results, the fabricated TFN-ZP400 sample was confirmed to has an optimal water flux (20.5 LMH), compared to TFC (12.2 LMH) and other TFN membranes. Meanwhile, salt reverse flux (2.5 gMH) was maintained at a minimum level. Also, the high hydrophilicity of ZnO-g-PAM nanofiller in the PA structure leads to the hydration layer formation on the ZnO-g-PAM-modified PA layer, which minimize the fouling tendency. Therefore, the present study is the first time to consider the implementation of ZnO-g-PAM onto TFN-FO membranes.
Graphical Abstract