当前位置: X-MOL 学术J. Mater. Sci. Mater. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tensile properties of human spinal dura mater and pericranium
Journal of Materials Science: Materials in Medicine ( IF 4.2 ) Pub Date : 2022-12-31 , DOI: 10.1007/s10856-022-06704-0
Sacha Cavelier 1, 2 , Ryan D Quarrington 1, 3 , Claire F Jones 1, 3, 4
Affiliation  

Autologous pericranium is a promising dural graft material. An optimal graft should exhibit similar mechanical properties to the native dura, but the mechanical properties of human pericranium have not been characterized, and studies of the biomechanical performance of human spinal dura are limited. The primary aim of this study was to measure the tensile structural and material properties of the pericranium, in the longitudinal and circumferential directions, and of the dura in each spinal region (cervical, thoracic and lumbar) and in three directions (longitudinal anterior and posterior, and circumferential). The secondary aim was to determine corresponding constitutive stress–strain equations using a one-term Ogden model. A total of 146 specimens were tested from 7 cadavers. Linear regression models assessed the effect of tissue type, region, and orientation on the structural and material properties. Pericranium was isotropic, while spinal dura was anisotropic with higher stiffness and strength in the longitudinal than the circumferential direction. Pericranium had lower strength and modulus than spinal dura across all regions in the longitudinal direction but was stronger and stiffer than dura in the circumferential direction. Spinal dura and pericranium had similar strain at peak force, toe, and yield, across all regions and directions. Human pericranium exhibits isotropic mechanical behavior that lies between that of the longitudinal and circumferential spinal dura. Further studies are required to determine if pericranium grafts behave like native dura under in vivo loading conditions. The Ogden parameters reported may be used for computational modeling of the central nervous system.



中文翻译:

人脊髓硬脑膜和骨膜的拉伸特性

自体骨膜是一种很有前途的硬脑膜移植材料。最佳移植物应表现出与天然硬脑膜相似的机械性能,但人类颅骨膜的机械性能尚未得到表征,对人类脊柱硬脑膜生物力学性能的研究也很有限。本研究的主要目的是测量骨膜在纵向和圆周方向的拉伸结构和材料特性,以及每个脊柱区域(颈椎、胸椎和腰椎)和三个方向(纵向前部和后部)硬脑膜的拉伸结构和材料特性, 和圆周)。次要目标是使用单项 Ogden 模型确定相应的本构应力-应变方程。从 7 具尸体中总共测试了 146 个标本。线性回归模型评估了组织类型、区域、结构和材料特性的取向。颅骨膜是各向同性的,而硬脊膜是各向异性的,在纵向比圆周方向具有更高的刚度和强度。颅骨膜在纵向所有区域的强度和模量都低于硬脊膜,但在周向方向比硬脑膜更坚固和更硬。在所有区域和方向上,脊髓硬脑膜和骨膜在峰值力、脚趾和屈服时具有相似的应变。人的骨膜表现出各向同性的力学行为,介于纵向和周向脊髓硬膜之间。需要进一步的研究来确定骨膜移植物在体内加载条件下是否表现得像天然硬脑膜。

更新日期:2022-12-31
down
wechat
bug