当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Application of N-Doped Carbon–Silicon Oxycarbide Based on POSS Synthesis in Lithium-Ion Batteries
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-12-29 , DOI: 10.1021/acs.energyfuels.2c03678 Duxin Zhang 1, 2 , Guoliang Liu 2 , Shifeng Tan 2 , Hongfei Pan 1, 2 , Wenmao Tu 2 , Haining Zhang 1, 2 , Yadong Wang 1, 2
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-12-29 , DOI: 10.1021/acs.energyfuels.2c03678 Duxin Zhang 1, 2 , Guoliang Liu 2 , Shifeng Tan 2 , Hongfei Pan 1, 2 , Wenmao Tu 2 , Haining Zhang 1, 2 , Yadong Wang 1, 2
Affiliation
Si/C materials have attracted much attention as anode materials for lithium-ion batteries. Here, nitrogen-doped silica carbon composites with a carbon-coated structure were synthesized using poly(1-vinylimidazole) in the presence of octavinyl-silsesquioxane followed by annealing and magnesium thermal reduction processes of the polymer precursor (PPVIm). Benefiting from the moderate Si–O–C bonds, the prepared NSiOC possesses a high first discharge capacity of 1862.3 mAh·g–1 at 0.2 A·g–1 and an initial Coulombic efficiency of 70.0% at 30 °C. When the temperature rises to 60 °C, the first discharge and charge specific capacities of the synthesized anode material at 0.2 A·g–1 increase to 2103.0 and 1528.7 mAh·g–1 with an ultralong lifespan of more than 1000 cycles. Moreover, the results show that the degradation of performance during the initial phase of cycles can be ascribed to the formation of an SEI layer and insufficient electrolyte penetration. The battery maintains a steady state (nearly 600 consecutive cycles) for a long time afterward as the activation of the anode material increases, attributed to the low expansion coefficient originating from the porous structure of the carbon capping layer and silicon oxide. In addition, the electrochemical attenuation process of the electrode material with a unique inorganic silica skeleton and exceptional electrochemical performance was also investigated for the assistance of future design in high-performance electrode materials.
中文翻译:
基于POSS合成的N掺杂碳-碳氧化硅在锂离子电池中的应用
Si/C材料作为锂离子电池负极材料备受关注。在这里,在八乙烯基倍半硅氧烷存在下,使用聚(1-乙烯基咪唑)合成具有碳包覆结构的氮掺杂二氧化硅碳复合材料,然后对聚合物前体(PPVIm)进行退火和镁热还原过程。得益于适度的 Si–O–C 键,制备的 NSiOC在 0.2 A·g –1下具有 1862.3 mAh·g –1的高首次放电容量,在 30 °C 下具有 70.0% 的初始库仑效率。当温度升至60℃时,合成负极材料在0.2 A·g –1下的首次充放电比容量分别增加到2103.0和1528.7 mAh·g –1具有超过 1000 次循环的超长使用寿命。此外,结果表明,循环初始阶段的性能下降可归因于 SEI 层的形成和电解质渗透不足。随着阳极材料活性的增加,电池长时间保持稳定状态(近 600 个连续循环),这归因于碳覆盖层和氧化硅的多孔结构导致的低膨胀系数。此外,还研究了具有独特无机二氧化硅骨架和优异电化学性能的电极材料的电化学衰减过程,以帮助未来设计高性能电极材料。
更新日期:2022-12-29
中文翻译:
基于POSS合成的N掺杂碳-碳氧化硅在锂离子电池中的应用
Si/C材料作为锂离子电池负极材料备受关注。在这里,在八乙烯基倍半硅氧烷存在下,使用聚(1-乙烯基咪唑)合成具有碳包覆结构的氮掺杂二氧化硅碳复合材料,然后对聚合物前体(PPVIm)进行退火和镁热还原过程。得益于适度的 Si–O–C 键,制备的 NSiOC在 0.2 A·g –1下具有 1862.3 mAh·g –1的高首次放电容量,在 30 °C 下具有 70.0% 的初始库仑效率。当温度升至60℃时,合成负极材料在0.2 A·g –1下的首次充放电比容量分别增加到2103.0和1528.7 mAh·g –1具有超过 1000 次循环的超长使用寿命。此外,结果表明,循环初始阶段的性能下降可归因于 SEI 层的形成和电解质渗透不足。随着阳极材料活性的增加,电池长时间保持稳定状态(近 600 个连续循环),这归因于碳覆盖层和氧化硅的多孔结构导致的低膨胀系数。此外,还研究了具有独特无机二氧化硅骨架和优异电化学性能的电极材料的电化学衰减过程,以帮助未来设计高性能电极材料。