当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Investigation of the Liquefaction Kinetics of the PolyE-IL-Catalyzed Catalytic Thermo Liquefaction Process for Organic Biodegradable Municipal Solid Waste
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-12-26 , DOI: 10.1021/acs.energyfuels.2c03066 Tejas M. Ukarde 1 , A. M. Joe Cyril Harrish 1 , Vishwanath Haily Dalvi 2 , Aniruddha B. Pandit 2 , Hitesh S. Pawar 1
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-12-26 , DOI: 10.1021/acs.energyfuels.2c03066 Tejas M. Ukarde 1 , A. M. Joe Cyril Harrish 1 , Vishwanath Haily Dalvi 2 , Aniruddha B. Pandit 2 , Hitesh S. Pawar 1
Affiliation
The catalytic thermo liquefaction (CTL) process with integration of the PolyE-IL catalyst has the specific advantages of high conversion, no char production, and nonstringent operating conditions. However, the study of the liquefaction kinetics is one of the most important parameters to elucidate the mechanism of the CTL process and a guide for process scale-up. The present manuscript demonstrates the elucidation of the liquefaction kinetics of a PolyE-IL-catalyzed CTL process for CTL of organic biodegradable waste. The CTL for different feedstocks showed >80% feed conversion at 120 °C in 120 min and under 10 bar inert gas pressure. Thus, both pressure and reflux reaction condition approaches for CTL were followed to investigate prevailing reactor parameters for liquefaction. However, the influences of reactor operating conditions with variable MSW slurry concentrations, temperatures, and times were inspected. The lower slurry concentration (<3 wt %) did not show the effect of the mode of operation, but the efficacy of liquefaction was reduced in the reflux mode of operation at a higher slurry concentration (<5 wt %). The reaction temperature of >90 °C was found to be efficient to achieve a maximum conversion, 75 and 70% at pressure and reflux modes of operation, respectively. Moreover, it was observed that a reaction time of at least 10 min was sufficient to achieve at least 75% conversion, although a longer reaction time increased the degree of liquefaction. According to liquefaction behavior of MSW, the plausible reaction routes were proposed. The first-order reaction was shown in the kinetic analysis to have an activation energy of 411.5 J/g and a frequency factor of 9.3 min–1. The lowest contact time was advantageous for increased liquefaction of MSW. Thus, the present study offers an in-depth understanding of the CTL reaction pathways and the liquefaction kinetics, which can be useful for developing scalable and economically viable CTL processes.
中文翻译:
PolyE-IL 催化的有机可生物降解城市固体废物催化热液化过程的液化动力学研究
集成PolyE-IL催化剂的催化热液化(CTL)工艺具有转化率高、不产生焦炭和操作条件不严格等特殊优点。然而,液化动力学的研究是阐明 CTL 过程机制的最重要参数之一,也是过程放大的指南。本手稿展示了用于有机可生物降解废物 CTL 的 PolyE-IL 催化 CTL 过程的液化动力学的阐明。不同原料的 CTL 在 120 °C、120 分钟和 10 巴惰性气体压力下显示 >80% 的进料转化率。因此,遵循 CTL 的压力和回流反应条件方法来研究液化的主要反应器参数。然而,检查了反应器运行条件对不同 MSW 泥浆浓度、温度和时间的影响。较低的浆液浓度 (<3 wt%) 未显示操作模式的影响,但在较高浆液浓度 (<5 wt%) 的回流操作模式下,液化效率降低。发现 >90 °C 的反应温度可有效实现最大转化率,在压力和回流操作模式下分别为 75% 和 70%。此外,观察到至少 10 分钟的反应时间足以实现至少 75% 的转化率,尽管较长的反应时间会增加液化程度。根据 MSW 的液化行为,提出了合理的反应路线。–1。最短的接触时间有利于增加 MSW 的液化。因此,本研究提供了对 CTL 反应途径和液化动力学的深入了解,这可用于开发可扩展且经济可行的 CTL 工艺。
更新日期:2022-12-26
中文翻译:
PolyE-IL 催化的有机可生物降解城市固体废物催化热液化过程的液化动力学研究
集成PolyE-IL催化剂的催化热液化(CTL)工艺具有转化率高、不产生焦炭和操作条件不严格等特殊优点。然而,液化动力学的研究是阐明 CTL 过程机制的最重要参数之一,也是过程放大的指南。本手稿展示了用于有机可生物降解废物 CTL 的 PolyE-IL 催化 CTL 过程的液化动力学的阐明。不同原料的 CTL 在 120 °C、120 分钟和 10 巴惰性气体压力下显示 >80% 的进料转化率。因此,遵循 CTL 的压力和回流反应条件方法来研究液化的主要反应器参数。然而,检查了反应器运行条件对不同 MSW 泥浆浓度、温度和时间的影响。较低的浆液浓度 (<3 wt%) 未显示操作模式的影响,但在较高浆液浓度 (<5 wt%) 的回流操作模式下,液化效率降低。发现 >90 °C 的反应温度可有效实现最大转化率,在压力和回流操作模式下分别为 75% 和 70%。此外,观察到至少 10 分钟的反应时间足以实现至少 75% 的转化率,尽管较长的反应时间会增加液化程度。根据 MSW 的液化行为,提出了合理的反应路线。–1。最短的接触时间有利于增加 MSW 的液化。因此,本研究提供了对 CTL 反应途径和液化动力学的深入了解,这可用于开发可扩展且经济可行的 CTL 工艺。