Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2022-12-20 , DOI: 10.1016/j.jcis.2022.12.097 Hongwei Lu 1 , Danling Wang 2 , Daye Huang 2 , Luyao Feng 1 , Huapeng Zhang 1 , Peng Zhu 1
PNIPAM as a stimuli-responsive polymer has generated extreme interests due to its versatile applications. However, there is no research report on whether PNIPAM micro/nano-particles can be extracted from its suspension after phase separation. In the present work, LCST-type phase separation in self-synthesized PNIPAM/water system was investigated in depth by dividing the DLS testing process into four stages. In addition to quenching duration, temperature rise process, quenching temperature and PNIPAM concentration all have a great influence on particle size of the suspension. Meanwhile, the steady-state rheology and dynamic viscoelasticity results show that PNIPAM micro/nano-particles in the suspension are “soft” that can deform. Finally, FE-SEM was used to observe the morphology of dehydrated PNIPAM extracted by sessile droplet evaporation under different conditions. The results indicate that these “soft” particles are easier to fuse together, do not have sufficient mechanical strength to maintain their spherical morphology after dehydration. But the above fusion can be suppressed by adjusting evaporation conditions to acquire smaller PNIPAM particles which have sufficient mechanical properties to keep their basic particle morphology. Further, by changing evaporation pressure to positive or negative pressure, dehydrated PNIPAM micro/nano-particles with excellent uniformity and separation can be obtained. This work will provide guidance for extracting micro/nano-particles from polymer/diluent systems with LCST.
中文翻译:
来自 LCST 以上 PNIPAM/水系统的固着液滴蒸发的产物:块或微米/纳米颗粒?
PNIPAM 作为一种刺激响应聚合物,由于其广泛的应用而引起了极大的兴趣。但目前尚无关于相分离后能否从其悬浮液中提取出PNIPAM微/纳米粒子的研究报道。在目前的工作中,通过将 DLS 测试过程分为四个阶段,深入研究了自合成 PNIPAM/水系统中的 LCST 型相分离。除淬火时间外,升温过程、淬火温度和PNIPAM浓度均对悬浮液粒径有较大影响。同时,稳态流变学和动态粘弹性结果表明,悬浮液中的PNIPAM微/纳米颗粒是“软”的,可以变形。最后,FE-SEM 用于观察在不同条件下通过固着液滴蒸发提取的脱水 PNIPAM 的形态。结果表明,这些“软”颗粒更容易融合在一起,脱水后没有足够的机械强度来维持其球形形态。但是可以通过调整蒸发条件来抑制上述融合,以获得更小的 PNIPAM 颗粒,这些颗粒具有足够的机械性能以保持其基本颗粒形态。此外,通过改变蒸发压力为正压或负压,可以获得均匀性和分离性优异的脱水PNIPAM微/纳米粒子。这项工作将为使用 LCST 从聚合物/稀释剂系统中提取微米/纳米颗粒提供指导。结果表明,这些“软”颗粒更容易融合在一起,脱水后没有足够的机械强度来维持其球形形态。但是可以通过调整蒸发条件来抑制上述融合,以获得更小的 PNIPAM 颗粒,这些颗粒具有足够的机械性能以保持其基本颗粒形态。此外,通过改变蒸发压力为正压或负压,可以获得均匀性和分离性优异的脱水PNIPAM微/纳米粒子。这项工作将为使用 LCST 从聚合物/稀释剂系统中提取微米/纳米颗粒提供指导。结果表明,这些“软”颗粒更容易融合在一起,脱水后没有足够的机械强度来维持其球形形态。但是可以通过调整蒸发条件来抑制上述融合,以获得更小的 PNIPAM 颗粒,这些颗粒具有足够的机械性能以保持其基本颗粒形态。此外,通过改变蒸发压力为正压或负压,可以获得均匀性和分离性优异的脱水PNIPAM微/纳米粒子。这项工作将为使用 LCST 从聚合物/稀释剂系统中提取微米/纳米颗粒提供指导。但是可以通过调整蒸发条件来抑制上述融合,以获得更小的 PNIPAM 颗粒,这些颗粒具有足够的机械性能以保持其基本颗粒形态。此外,通过改变蒸发压力为正压或负压,可以获得均匀性和分离性优异的脱水PNIPAM微/纳米粒子。这项工作将为使用 LCST 从聚合物/稀释剂系统中提取微米/纳米颗粒提供指导。但是可以通过调整蒸发条件来抑制上述融合,以获得更小的 PNIPAM 颗粒,这些颗粒具有足够的机械性能以保持其基本颗粒形态。此外,通过改变蒸发压力为正压或负压,可以获得均匀性和分离性优异的脱水PNIPAM微/纳米粒子。这项工作将为使用 LCST 从聚合物/稀释剂系统中提取微米/纳米颗粒提供指导。