摘要
使用聚己内酯 (PCL) 和微晶纤维素 (MCC) 复合材料(95/5、90/10、85/15 wt%)用于骨组织再生的纳米羟基磷灰石 (nHA) 和白钙石 (nWH) 纳米复合材料的构效关系已在本报告中阐明。系统地评估了复合材料的形态、结晶度、热性能、降解、机械性能以及体外、体内生物相容性。简而言之,nHA 和 nWH 纳米颗粒分别通过化学沉淀和三溶剂系统合成。与原始 PCL 相比,PCL 基质中的 MCC 5 wt% (PCL/MCC-5) 显示出增强的机械强度、增加的结晶度和多孔形态。nHA 和 nWH 增强的 PCL/MCC-5 复合材料的形态分析显示孔径减小。结构分析、XRD、FTIR、DSC 得出结论,添加 nHA 和 nWH(1-10 wt%)可作为聚合物链的成核位点,从而改善 PCL/MCC-5 的结晶度。范德华力的存在导致结晶度增加和孔径减小。机械测试显示,与原始 PCL 相比,10 wt% nHA 的模量增加了 113 倍,10 wt% nWH 负载的模量增加了 125 倍。使用 Vero 细胞系的体外细胞相容性显示,在第 7 天,PCL/MCC-5 复合材料的细胞活力约为 88%,负载 5wt% 和 10 wt% nHA 的复合材料的细胞活力约为 94%,这表明纳米颗粒改善了复合材料的骨传导性和骨诱导性。含有 1% nHA 的 NIH3T3-L1 细胞系的 LIVE/DEAD 测定显示在所有 3、7、14 和 21 天的细胞存活率最高。与原始 PCL 相比,使用 10 wt% 的 nHA 和 nWH 的体内试验证明了对纳米复合材料的完整和厚实的肌肉粘附和生物界面亲和力。我们的研究结果表明,具有 nHA 和 nWH 的 PCL/MCC 复合材料可作为一种有前途的骨植入物。
图形概要
"点击查看英文标题和摘要"
Hydroxyapatite and Whitlockite Incorporated Cellulose Reinforced Poly-Caprolactone (PCL): Biomimetic Nanocomposites for Bone Tissue Engineering Applications
Abstract
Structure-activity relationship of nano-hydroxyapatite (nHA) and whitlockite (nWH) nanocomposites using Poly-Caprolactone (PCL) and Microcrystalline cellulose (MCC) composite (95/5, 90/10, 85/15 wt%) for bone tissue regeneration is elucidated in this report. Morphology, crystallinity, thermal properties, degradation, mechanical properties, and In Vitro, In Vivo biocompatibility of composites were systematically evaluated. Briefly, nHA and nWH nanoparticles were synthesized by chemical precipitation and trisolvent systems, respectively. MCC 5 wt% in PCL matrix (PCL/MCC-5) showed enhanced mechanical strength, increased crystallinity, and porous morphology compared to virgin PCL. Morphological analysis of nHA and nWH reinforced PCL/MCC-5 composite revealed a reduction in the pore size. Structural analysis, XRD, FTIR, and DSC concluded that nHA and nWH addition (1–10 wt%) improved the crystallinity of the PCL/MCC-5 by acting as nucleating sites for polymer chains. The presence of Van der Waals forces of attraction caused an increase in crystallinity and a decrease in pore size. Mechanical testing revealed an increase in modulus by 113 times for 10 wt% nHA and 125 times increase on 10 wt% nWH loading compared to virgin PCL. In vitro cytocompatibility using Vero cell line showed ~ 88% cell viability for PCL/MCC-5 composite and ~ 94% for 5wt% and 10 wt% nHA loaded composite on day 7, which shows nanoparticles improved osteoconductive and osteinductivity of the composites. LIVE/DEAD assay with NIH3T3-L1 cell lines with 1% nHA showed the highest cell viability for all 3, 7, 14, and 21 days. In vivo trials with 10 wt% of nHA and nWH demonstrated full and thick muscle adherence and bio-interfacial affinity to the nanocomposites in comparison to virgin PCL. Our findings suggest that PCL/MCC composite with nHA and nWH may serve as a promising bone implant.
Graphical Abstract