当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Degradation Pathways of Cobalt-Free LiNiO2 Cathode in Lithium Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-12-21 , DOI: 10.1002/adfm.202211461 Ruijun Pan 1 , Eunmi Jo 1 , Zehao Cui 1 , Arumugam Manthiram 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-12-21 , DOI: 10.1002/adfm.202211461 Ruijun Pan 1 , Eunmi Jo 1 , Zehao Cui 1 , Arumugam Manthiram 1
Affiliation
Electrode-electrolyte reactivity (EER) and particle cracking (PC) are considered two main causes of capacity fade in high-nickel layered oxide cathodes in lithium-based batteries. However, whether EER or PC is more critical remains debatable. Herein, the fundamental correlation between EER and PC is systematically investigated with LiNiO2 (LNO), the ultimate cobalt-free lithium layered oxide cathode. Specifically, EER is found more critical than secondary particle cracking (SPC) in determining the cycling stability of LNO; EER leads to primary particle cracking, but mitigates SPC due to the inhibition of H2-H3 phase transformation. Two surface degradation pathways are identified for cycled LNO under low and high EERs. A common blocking surface reconstruction layer (SRL) containing electrochemically-inactive Ni3O4 spinel and NiO rock-salt phases is formed on LNO in an electrolyte with a high EER; in contrast, an electrochemically-active SRL featuring regions of electron- and lithium-ion-conductive LiNi2O4 spinel phase is formed on LNO in an electrolyte with a low EER. These findings unveil the intrinsic degradation pathways of LNO cathode and are foreseen to provide new insights into the development of lithium-based batteries with a minimized EER and a maximized service life.
中文翻译:
锂电池中无钴 LiNiO2 正极的降解途径
电极电解质反应性 (EER) 和颗粒开裂 (PC) 被认为是锂基电池中高镍层状氧化物正极容量衰减的两个主要原因。然而,EER 或 PC 哪个更重要仍有争议。在此,系统地研究了 EER 和 PC 之间的基本相关性,使用最终的无钴锂层状氧化物正极LiNiO 2 (LNO)。具体而言,在确定 LNO 的循环稳定性方面,EER 比二次粒子开裂 (SPC) 更为关键;EER 导致初级粒子开裂,但由于抑制 H2-H3 相变而减轻了 SPC。在低 EER 和高 EER 下,确定了循环 LNO 的两种表面降解途径。包含电化学惰性 Ni 的普通阻挡表面重建层 (SRL)3 O 4尖晶石和NiO岩盐相在具有高EER的电解质中在LNO上形成;相比之下,在具有低 EER 的电解质中,在 LNO 上形成了具有电子和锂离子导电 LiNi 2 O 4尖晶石相区域的电化学活性 SRL。这些发现揭示了 LNO 阴极的内在降解途径,预计将为开发具有最小 EER 和最长使用寿命的锂基电池提供新的见解。
更新日期:2022-12-21
中文翻译:
锂电池中无钴 LiNiO2 正极的降解途径
电极电解质反应性 (EER) 和颗粒开裂 (PC) 被认为是锂基电池中高镍层状氧化物正极容量衰减的两个主要原因。然而,EER 或 PC 哪个更重要仍有争议。在此,系统地研究了 EER 和 PC 之间的基本相关性,使用最终的无钴锂层状氧化物正极LiNiO 2 (LNO)。具体而言,在确定 LNO 的循环稳定性方面,EER 比二次粒子开裂 (SPC) 更为关键;EER 导致初级粒子开裂,但由于抑制 H2-H3 相变而减轻了 SPC。在低 EER 和高 EER 下,确定了循环 LNO 的两种表面降解途径。包含电化学惰性 Ni 的普通阻挡表面重建层 (SRL)3 O 4尖晶石和NiO岩盐相在具有高EER的电解质中在LNO上形成;相比之下,在具有低 EER 的电解质中,在 LNO 上形成了具有电子和锂离子导电 LiNi 2 O 4尖晶石相区域的电化学活性 SRL。这些发现揭示了 LNO 阴极的内在降解途径,预计将为开发具有最小 EER 和最长使用寿命的锂基电池提供新的见解。