当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Readily Obtained Alternative to 1H-Benzo[f]indole toward Room-Temperature Ultralong Organic Phosphorescence
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-12-19 , DOI: 10.1021/acs.chemmater.2c03484 Xiaohua Fu 1 , Xue Zhang 1 , Chen Qian 1 , Zhimin Ma 2 , Zewei Li 2 , Hong Jiang 2 , Zhiyong Ma 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-12-19 , DOI: 10.1021/acs.chemmater.2c03484 Xiaohua Fu 1 , Xue Zhang 1 , Chen Qian 1 , Zhimin Ma 2 , Zewei Li 2 , Hong Jiang 2 , Zhiyong Ma 1
Affiliation
1H-Benzo[f]indole (Bd) is a significant phosphorescence unit in the field of room-temperature ultralong organic phosphorescence (RTUOP). However, the synthesis of Bd is rather hard and has a low yield, which greatly limits the wide applications of RTUOP. Therefore, exploring readily obtained alternatives to Bd is of great significance and demands to be addressed although it is full of challenges. Herein, we report a new phosphorescence unit named 5H-benzo[b]carbazole (BCz), which can function similarly as Bd in RTUOP. BCz can be obtained facilely via two steps of reactions, while the synthesis of Bd requires seven steps of tedious reactions. Excitingly, readily obtained BCz is an excellent alternative to Bd in RTUOP in the following aspects and shows some advantages in comparison with Bd: First, BCz and its derivatives can exhibit distinctive redshifted red ultralong phosphorescence in the self-aggregated state at 77 K while Bd and its derivatives cannot. Second, BCz demonstrates remarkable photo-activated yellow ultralong phosphorescence at room temperature while the intrinsic phosphorescence of Bd is difficult to be activated at room temperature. Third, BCz derivatives (CNPyBCz and CNBrBCz) display similar photo-activated yellow ultralong phosphorescence as Bd derivatives at room temperature but their phosphorescent lifetimes are longer. Fourth, it is shown that BCz and its derivatives emit yellow RTUOP in powder matrixes as their carbazole counterparts do. It is revealed that BCz and Bd share the same cation-radical-involved phosphorescence mechanism featuring charge separation and charge recombination and the redshift of ultralong phosphorescence in the self-aggregated state arises from enhanced π–π interactions among BCz units. To the best of our knowledge, this study paves a simple way for future applications of RTUOP. Moreover, this work indicates that the cation-radical-involved mechanism may be universal in the field of RTUOP.
中文翻译:
一种易于获得的 1H-苯并 [f] 吲哚替代品用于室温超长有机磷光
1 H-苯并[ f ]吲哚 (Bd) 是室温超长有机磷光 (RTUOP) 领域中重要的磷光单元。但是Bd的合成难度大,产率低,极大地限制了RTUOP的广泛应用。因此,尽管充满挑战,但探索现成的 Bd 替代品具有重要意义和需要解决的问题。在此,我们报道了一种名为 5 H -benzo[ b]咔唑 (BCz),其功能类似于 RTUOP 中的 Bd。BCz可以通过两步反应轻松获得,而Bd的合成需要七步繁琐的反应。令人兴奋的是,容易获得的 BCz 在 RTUOP 中是 Bd 的极好替代品,在以下方面与 Bd 相比显示出一些优势:首先,BCz 及其衍生物在 77 K 的自聚集状态下可以表现出独特的红移红色超长磷光,而 Bd及其衍生物不能。其次,BCz 在室温下表现出显着的光激活黄色超长磷光,而 Bd 的固有磷光在室温下很难被激活。第三,BCz 衍生物(CNPyBCz 和 CNBrBCz)在室温下显示出与 Bd 衍生物相似的光激活黄色超长磷光,但它们的磷光寿命更长。第四,表明 BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。
更新日期:2022-12-19
中文翻译:
一种易于获得的 1H-苯并 [f] 吲哚替代品用于室温超长有机磷光
1 H-苯并[ f ]吲哚 (Bd) 是室温超长有机磷光 (RTUOP) 领域中重要的磷光单元。但是Bd的合成难度大,产率低,极大地限制了RTUOP的广泛应用。因此,尽管充满挑战,但探索现成的 Bd 替代品具有重要意义和需要解决的问题。在此,我们报道了一种名为 5 H -benzo[ b]咔唑 (BCz),其功能类似于 RTUOP 中的 Bd。BCz可以通过两步反应轻松获得,而Bd的合成需要七步繁琐的反应。令人兴奋的是,容易获得的 BCz 在 RTUOP 中是 Bd 的极好替代品,在以下方面与 Bd 相比显示出一些优势:首先,BCz 及其衍生物在 77 K 的自聚集状态下可以表现出独特的红移红色超长磷光,而 Bd及其衍生物不能。其次,BCz 在室温下表现出显着的光激活黄色超长磷光,而 Bd 的固有磷光在室温下很难被激活。第三,BCz 衍生物(CNPyBCz 和 CNBrBCz)在室温下显示出与 Bd 衍生物相似的光激活黄色超长磷光,但它们的磷光寿命更长。第四,表明 BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 及其衍生物在粉末基质中发出黄色 RTUOP,就像它们的咔唑对应物一样。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。结果表明,BCz 和 Bd 具有相同的以电荷分离和电荷复合为特征的阳离子自由基参与磷光机制,自聚集状态下超长磷光的红移是由 BCz 单元之间增强的 π-π 相互作用引起的。据我们所知,这项研究为 RTUOP 的未来应用铺平了一条简单的道路。此外,这项工作表明,阳离子自由基参与机制可能在 RTUOP 领域具有普遍性。