当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecule-Enhanced Electrocatalysis of Sustainable Oxygen Evolution Using Organoselenium Functionalized Metal–Organic Nanosheets
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-12-20 , DOI: 10.1021/jacs.2c10823 Li-Ming Cao 1 , Chang-Guo Hu 1 , Hai-Hong Li 1 , Hui-Bin Huang 1 , Li-Wen Ding 1 , Jia Zhang 1 , Jun-Xi Wu 2 , Zi-Yi Du 1 , Chun-Ting He 1 , Xiao-Ming Chen 2
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2022-12-20 , DOI: 10.1021/jacs.2c10823 Li-Ming Cao 1 , Chang-Guo Hu 1 , Hai-Hong Li 1 , Hui-Bin Huang 1 , Li-Wen Ding 1 , Jia Zhang 1 , Jun-Xi Wu 2 , Zi-Yi Du 1 , Chun-Ting He 1 , Xiao-Ming Chen 2
Affiliation
Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C–Se–C covalent bonds equipped in the precatalyst of ultrathin metal–organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.
中文翻译:
使用有机硒功能化金属-有机纳米片的可持续氧气释放的分子增强电催化
重塑金属活性位点的反应性对于促进可再生电力水电解至关重要。将杂原子(例如 Se)掺杂到金属晶格中被认为是一种有效的方法,但在苛刻的电催化条件下通常会损失功能性杂原子,从而导致催化剂逐渐失活。在这里,我们报告了一种新的含杂原子的分子增强策略,以实现可持续的氧气释放改进。有机硒配体,bis(3,5-dimethyl-1 H-pyrazol-4-yl)selenide 含有强大的 C-Se-C 共价键,配备在超薄金属-有机纳米片 Co-SeMON 的预催化剂中,显着提高了钴位点的催化质量活性 25 倍,以及与这些报道的金属硒化物相比,将碱性条件下的催化剂运行时间延长 1 或 2 个数量级。各种原位/非原位的组合光谱技术、从头算分子动力学和密度泛函理论计算揭示了有机硒强化机制,其中 Se 与含 O 中间体的非经典键合赋予了超越传统比例关系的吸附能量调节。我们的结果展示了分子增强催化剂在高效和经济的水氧化方面的巨大潜力。
更新日期:2022-12-20
中文翻译:
使用有机硒功能化金属-有机纳米片的可持续氧气释放的分子增强电催化
重塑金属活性位点的反应性对于促进可再生电力水电解至关重要。将杂原子(例如 Se)掺杂到金属晶格中被认为是一种有效的方法,但在苛刻的电催化条件下通常会损失功能性杂原子,从而导致催化剂逐渐失活。在这里,我们报告了一种新的含杂原子的分子增强策略,以实现可持续的氧气释放改进。有机硒配体,bis(3,5-dimethyl-1 H-pyrazol-4-yl)selenide 含有强大的 C-Se-C 共价键,配备在超薄金属-有机纳米片 Co-SeMON 的预催化剂中,显着提高了钴位点的催化质量活性 25 倍,以及与这些报道的金属硒化物相比,将碱性条件下的催化剂运行时间延长 1 或 2 个数量级。各种原位/非原位的组合光谱技术、从头算分子动力学和密度泛函理论计算揭示了有机硒强化机制,其中 Se 与含 O 中间体的非经典键合赋予了超越传统比例关系的吸附能量调节。我们的结果展示了分子增强催化剂在高效和经济的水氧化方面的巨大潜力。