Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2022-12-19 , DOI: 10.1016/j.jallcom.2022.168544 Zhuoya Tong , Qingquan Ye , Yimei Deng , Qin She , Aoyu Huang , Jun Xu , Xiaobo Zhu
High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most attractive cathode materials for next-generation Li-ion batteries (LIBs). However, its electrochemical performance depends on its morphology as well as a range of structural parameters. To boost the electrochemical performance of LNMO, here we combine the design of hierarchical microstructure with the control of structural disordering. The hierarchical microrod structure enabled by a simple self-template method guarantees stable capacity retention up to 20 C. Moving forward, the further control of the structural disordering by quenching the microrods at different temperatures leads to an outstanding rate capability. The LNMO microrods quenched at 700 ℃ deliver a capacity of 116 mA h g-1 even at a discharging rate of 50 C, and the electrode maintains 80% of its capacity after 1000 cycles at 5 C. Further experimental study discloses the critical role of the structural disordering over Mn3+ towards the electrochemical performance.
中文翻译:
调整分层 LiNi0.5Mn1.5O4 微棒中的结构无序以获得稳定的高速电极性能
高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是下一代锂离子电池 (LIB) 最具吸引力的阴极材料之一。然而,其电化学性能取决于其形态以及一系列结构参数。为了提高 LNMO 的电化学性能,我们将分级微结构设计与结构无序控制相结合。通过简单的自模板方法实现的分层微棒结构可确保高达 20 C的稳定容量保持 . 展望未来,通过在不同温度下淬火微棒来进一步控制结构无序导致出色的速率能力。在 700 ℃ 淬火的 LNMO 微棒即使在 50 C的放电速率下也能提供 116 mA h g -1的容量,并且电极在 5 C下循环 1000 次后仍保持其 80% 的容量。进一步的实验研究揭示了 Mn 3+结构无序对电化学性能的关键作用。