Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cathode–Electrolyte Interface Modification by Binder Engineering for High-Performance Aqueous Zinc-Ion Batteries
Advanced Science ( IF 14.3 ) Pub Date : 2022-12-16 , DOI: 10.1002/advs.202205084 Haobo Dong 1, 2 , Ruirui Liu 3 , Xueying Hu 1 , Fangjia Zhao 1 , Liqun Kang 4 , Longxiang Liu 1 , Jianwei Li 1 , Yeshu Tan 1 , Yongquan Zhou 3 , Dan J L Brett 2 , Guanjie He 2 , Ivan P Parkin 1
Advanced Science ( IF 14.3 ) Pub Date : 2022-12-16 , DOI: 10.1002/advs.202205084 Haobo Dong 1, 2 , Ruirui Liu 3 , Xueying Hu 1 , Fangjia Zhao 1 , Liqun Kang 4 , Longxiang Liu 1 , Jianwei Li 1 , Yeshu Tan 1 , Yongquan Zhou 3 , Dan J L Brett 2 , Guanjie He 2 , Ivan P Parkin 1
Affiliation
A stable cathode–electrolyte interface (CEI) is crucial for aqueous zinc-ion batteries (AZIBs), but it is less investigated. Commercial binder poly(vinylidene fluoride) (PVDF) is widely used without scrutinizing its suitability and cathode-electrolyte interface (CEI) in AZIBs. A water-soluble binder is developed that facilitated the in situ formation of a CEI protecting layer tuning the interfacial morphology. By combining a polysaccharide sodium alginate (SA) with a hydrophobic polytetrafluoroethylene (PTFE), the surface morphology, and charge storage kinetics can be confined from diffusion-dominated to capacitance-controlled processes. The underpinning mechanism investigates experimentally in both kinetic and thermodynamic perspectives demonstrate that the COO− from SA acts as an anionic polyelectrolyte facilitating the adsorption of Zn2+; meanwhile fluoride atoms on PTFE backbone provide hydrophobicity to break desolvation penalty. The hybrid binder is beneficial in providing a higher areal flux of Zn2+ at the CEI, where the Zn-Birnessite MnO2 battery with the hybrid binder exhibits an average specific capacity 45.6% higher than that with conventional PVDF binders; moreover, a reduced interface activation energy attained fosters a superior rate capability and a capacity retention of 99.1% in 1000 cycles. The hybrid binder also reduces the cost compared to the PVDF/NMP, which is a universal strategy to modify interface morphology.
中文翻译:
通过粘合剂工程对高性能水系锌离子电池进行阴极-电解质界面改性
稳定的阴极-电解质界面 (CEI) 对于水性锌离子电池 (AZIB) 至关重要,但研究较少。商业粘合剂聚偏二氟乙烯 (PVDF) 被广泛使用,而无需仔细审查其在 AZIB 中的适用性和阴极电解质界面 (CEI)。开发了一种水溶性粘合剂,有助于原位形成 CEI 保护层,从而调整界面形态。通过将多糖海藻酸钠 (SA) 与疏水性聚四氟乙烯 (PTFE) 相结合,表面形态和电荷存储动力学可以从扩散主导的过程限制到电容控制的过程。从动力学和热力学角度进行实验研究的基础机制表明,来自 SA 的 COO − 充当阴离子聚电解质,促进 Zn2+ 的吸附;同时,PTFE 主链上的氟原子提供疏水性以打破脱溶剂化损失。杂化粘合剂有利于在 CEI 处提供更高的 Zn2+ 面通量,其中带有混合粘合剂的 Zn-Birnessite MnO2 电池的平均比容量比使用传统 PVDF 粘合剂高 45.6%;此外,降低的界面活化能促进了卓越的倍率能力和 1000 次循环中 99.1% 的容量保持。与 PVDF/NMP 相比,杂化粘合剂还降低了成本,PVDF/NMP 是改变界面形态的通用策略。
更新日期:2022-12-16
中文翻译:
通过粘合剂工程对高性能水系锌离子电池进行阴极-电解质界面改性
稳定的阴极-电解质界面 (CEI) 对于水性锌离子电池 (AZIB) 至关重要,但研究较少。商业粘合剂聚偏二氟乙烯 (PVDF) 被广泛使用,而无需仔细审查其在 AZIB 中的适用性和阴极电解质界面 (CEI)。开发了一种水溶性粘合剂,有助于原位形成 CEI 保护层,从而调整界面形态。通过将多糖海藻酸钠 (SA) 与疏水性聚四氟乙烯 (PTFE) 相结合,表面形态和电荷存储动力学可以从扩散主导的过程限制到电容控制的过程。从动力学和热力学角度进行实验研究的基础机制表明,来自 SA 的 COO − 充当阴离子聚电解质,促进 Zn2+ 的吸附;同时,PTFE 主链上的氟原子提供疏水性以打破脱溶剂化损失。杂化粘合剂有利于在 CEI 处提供更高的 Zn2+ 面通量,其中带有混合粘合剂的 Zn-Birnessite MnO2 电池的平均比容量比使用传统 PVDF 粘合剂高 45.6%;此外,降低的界面活化能促进了卓越的倍率能力和 1000 次循环中 99.1% 的容量保持。与 PVDF/NMP 相比,杂化粘合剂还降低了成本,PVDF/NMP 是改变界面形态的通用策略。