当前位置:
X-MOL 学术
›
Sustain. Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Operation strategies for a flexible megawatt scale electrolysis system for synthesis gas and hydrogen production with direct air capture of carbon dioxide
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2022-12-16 , DOI: 10.1039/d2se01473d
Marius Tomberg 1 , Marc P. Heddrich 1 , S. Asif Ansar 1 , K. Andreas Friedrich 1, 2
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2022-12-16 , DOI: 10.1039/d2se01473d
Marius Tomberg 1 , Marc P. Heddrich 1 , S. Asif Ansar 1 , K. Andreas Friedrich 1, 2
Affiliation
![]() |
Among electrolyzers, electrolysis systems with solid oxide cell (SOC) reactors can operate at the highest efficiency due to low electrochemical losses and the utilization of waste heat for the evaporation of water. Additionally, SOCs can be operated not only in H2O electrolysis mode, but also in CO2 electrolysis and co-electrolysis mode, resulting in high flexibility. In this contribution, developed operation strategies for the transient operation of MW-scale electrolysis systems with solid oxide cells are presented. By applying these strategies, it is shown that systems with SOCs can be operated more transiently than usually assumed. The investigations were carried out in the context of a megawatt scale flexible electrolysis system concept with carbon dioxide capture from air, where the process system would consist of twelve reactors with a nominal load of 80 kW. Concepting, parameterization and simulation rely on DLR's experiments on an actual 80 kW SOC reactor. Crucial and efficient operation points were defined and transitions between these were established by comparison of different strategies and control approaches. The simulation results show that fast and robust transients are possible. For example, the start-up time from hot-standby to 70% of nominal load could be decreased by a factor of 5. The start-up time to nominal load operation was reduced by 20%, while the temperature gradients were reduced by a factor of 2. Furthermore, by taking advantage of the modular nature of state-of-the-art reactors, fast power modulation can be achieved.
中文翻译:
用于合成气和制氢的灵活兆瓦级电解系统的操作策略,直接空气捕获二氧化碳
在电解槽中,具有固体氧化物电池 (SOC) 反应器的电解系统可以以最高效率运行,因为电化学损失低,并且利用废热蒸发水。此外,SOC 不仅可以在 H 2 O 电解模式下运行,还可以在 CO 2模式下运行电解和共电解模式,灵活性高。在此贡献中,提出了用于具有固体氧化物电池的 MW 级电解系统瞬态操作的开发操作策略。通过应用这些策略,表明具有 SOC 的系统可以比通常假设的更瞬态地运行。研究是在从空气中捕获二氧化碳的兆瓦级灵活电解系统概念的背景下进行的,其中工艺系统将由 12 个标称负载为 80 kW 的反应器组成。概念设计、参数化和模拟依赖于 DLR 在实际 80 kW SOC 反应堆上的实验。通过比较不同的策略和控制方法,定义了关键和有效的操作点,并在这些点之间建立了转换。仿真结果表明快速稳健的瞬变是可能的。例如,从热备用到 70% 额定负载的启动时间可以减少 5 倍。启动到额定负载运行的时间减少了 20%,同时温度梯度降低了系数 2。此外,通过利用最先进反应堆的模块化特性,可以实现快速功率调制。
更新日期:2022-12-16
中文翻译:

用于合成气和制氢的灵活兆瓦级电解系统的操作策略,直接空气捕获二氧化碳
在电解槽中,具有固体氧化物电池 (SOC) 反应器的电解系统可以以最高效率运行,因为电化学损失低,并且利用废热蒸发水。此外,SOC 不仅可以在 H 2 O 电解模式下运行,还可以在 CO 2模式下运行电解和共电解模式,灵活性高。在此贡献中,提出了用于具有固体氧化物电池的 MW 级电解系统瞬态操作的开发操作策略。通过应用这些策略,表明具有 SOC 的系统可以比通常假设的更瞬态地运行。研究是在从空气中捕获二氧化碳的兆瓦级灵活电解系统概念的背景下进行的,其中工艺系统将由 12 个标称负载为 80 kW 的反应器组成。概念设计、参数化和模拟依赖于 DLR 在实际 80 kW SOC 反应堆上的实验。通过比较不同的策略和控制方法,定义了关键和有效的操作点,并在这些点之间建立了转换。仿真结果表明快速稳健的瞬变是可能的。例如,从热备用到 70% 额定负载的启动时间可以减少 5 倍。启动到额定负载运行的时间减少了 20%,同时温度梯度降低了系数 2。此外,通过利用最先进反应堆的模块化特性,可以实现快速功率调制。