当前位置:
X-MOL 学术
›
Materialwissenschaft und Werkstofftechnik
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyacrylonitrile-based electrospun nanofibers – A critical review
Materialwissenschaft und Werkstofftechnik ( IF 0.744 ) Pub Date : 2022-12-14 , DOI: 10.1002/mawe.202200150 M. Aslam 1 , T. Khan 1 , M. Basit 1, 2 , R. Masood 2 , Z.A. Raza 1
Materialwissenschaft und Werkstofftechnik ( IF 0.744 ) Pub Date : 2022-12-14 , DOI: 10.1002/mawe.202200150 M. Aslam 1 , T. Khan 1 , M. Basit 1, 2 , R. Masood 2 , Z.A. Raza 1
Affiliation
This review is based on the fundamental aspects and applications of polyacrylonitrile (PAN)-based electrospun composite nanofibers. Various electrospinning techniques have been discussed here. polyacrylonitrile is an acrylic polymer of commercial significance that has superior thermal, mechanical, electrical, and chemical properties. The integration of polyacrylonitrile nanofibers with nanoparticles including carbon nanotubes, graphene nanosheets, graphene oxide, metal oxides, and their combinations has greatly improved the physicochemical properties of the polyacrylonitrile electrospun nanofibers. The enhanced features of polyacrylonitrile nanofibers have resulted from interfacial bonding of nitrile groups with the nanofiller used, chemical compositions, hydrophobicity, porosity, and wettability of these nanofibers. This article fundamentally features a few key possibilities of polyacrylonitrile-based electrospun composite nanofibers and their applications. A special focus has been made on polyacrylonitrile-based inorganic nanoparticles, graphene nanosheets, graphene oxide, and carbon nanotubes embedded electrospun nanofibers, for their potential applications in supercapacitors, high power batteries, filtration membranes, electromagnetic interference shielding, and strain sensors. Achieving low cost, high selectivity, excellent recyclability, and high absorption capability are the major challenges for electrospun nanofiber fabrications. These electrospun nanofibers require extensive research in the future to advance the technologies to bring them to the commercial market.
中文翻译:
基于聚丙烯腈的电纺纳米纤维——评论性评论
本综述基于聚丙烯腈 (PAN) 基电纺复合纳米纤维的基本方面和应用。这里讨论了各种静电纺丝技术。聚丙烯腈是一种具有商业意义的丙烯酸聚合物,具有优异的热、机械、电气和化学性能。聚丙烯腈纳米纤维与包括碳纳米管、石墨烯纳米片、氧化石墨烯、金属氧化物及其组合在内的纳米粒子的整合极大地改善了聚丙烯腈电纺纳米纤维的物理化学性能。聚丙烯腈纳米纤维的增强特性源于腈基与所用纳米填料的界面结合、这些纳米纤维的化学成分、疏水性、孔隙率和润湿性。本文从根本上介绍了基于聚丙烯腈的电纺复合纳米纤维及其应用的几个关键可能性。特别关注基于聚丙烯腈的无机纳米粒子、石墨烯纳米片、氧化石墨烯和嵌入电纺纳米纤维的碳纳米管,因为它们在超级电容器、高功率电池、过滤膜、电磁干扰屏蔽和应变传感器中的潜在应用。实现低成本、高选择性、优异的可回收性和高吸收能力是电纺纳米纤维制造的主要挑战。这些电纺纳米纤维需要在未来进行广泛的研究,以推进技术将它们推向商业市场。
更新日期:2022-12-15
中文翻译:
基于聚丙烯腈的电纺纳米纤维——评论性评论
本综述基于聚丙烯腈 (PAN) 基电纺复合纳米纤维的基本方面和应用。这里讨论了各种静电纺丝技术。聚丙烯腈是一种具有商业意义的丙烯酸聚合物,具有优异的热、机械、电气和化学性能。聚丙烯腈纳米纤维与包括碳纳米管、石墨烯纳米片、氧化石墨烯、金属氧化物及其组合在内的纳米粒子的整合极大地改善了聚丙烯腈电纺纳米纤维的物理化学性能。聚丙烯腈纳米纤维的增强特性源于腈基与所用纳米填料的界面结合、这些纳米纤维的化学成分、疏水性、孔隙率和润湿性。本文从根本上介绍了基于聚丙烯腈的电纺复合纳米纤维及其应用的几个关键可能性。特别关注基于聚丙烯腈的无机纳米粒子、石墨烯纳米片、氧化石墨烯和嵌入电纺纳米纤维的碳纳米管,因为它们在超级电容器、高功率电池、过滤膜、电磁干扰屏蔽和应变传感器中的潜在应用。实现低成本、高选择性、优异的可回收性和高吸收能力是电纺纳米纤维制造的主要挑战。这些电纺纳米纤维需要在未来进行广泛的研究,以推进技术将它们推向商业市场。