当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Si/SiO2@Graphene Superstructures for High-Performance Lithium-Ion Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-12-12 , DOI: 10.1002/adfm.202211648 Yiru Ma 1, 2 , Huiqi Qu 1, 3 , Wenna Wang 1, 2 , Yueqin Yu 2 , Xinghao Zhang 4 , Bin Li 1, 5 , Lei Wang 1, 2, 6
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-12-12 , DOI: 10.1002/adfm.202211648 Yiru Ma 1, 2 , Huiqi Qu 1, 3 , Wenna Wang 1, 2 , Yueqin Yu 2 , Xinghao Zhang 4 , Bin Li 1, 5 , Lei Wang 1, 2, 6
Affiliation
The superstructure composed of various functional building units is promising nanostructure for lithium-ion batteries (LIBs) anodes with extreme volume change and structure instability, such as silicon-based materials. Here, a top-down route to fabricate Si/SiO2@graphene superstructure is demonstrated through reducing silicalite-1 with magnesium reduction and depositing carbon layers. The successful formation of superstructure lies on the strong 3D network formed by the bridged-SiO2 matrix coated around silicon nanoparticles. Furthermore, the mesoporous Si/SiO2 with amorphous bridged SiO2 facilitates the deposition of graphene layers, resulting in excellent structural stability and high ion/electron transport rate. The optimized Si/SiO2@graphene superstructure anode delivers an outstanding cycling life for ≈1180 mAh g−1 at 2 A g−1 over 500 cycles, excellent rate capability for ≈908 mAh g−1 at 12 A g−1, great areal capacity for ≈7 mAh cm−2 at 0.5 mA cm−2, and extraordinary mechanical stability. A full cell test using LiFePO4 as the cathode manifests a high capacity of 134 mAh g−1 after 290 loops. More notably, a series of technologies disclose that the Si/SiO2@graphene superstructure electrode can effectively maintain the film between electrode and electrolyte in LIBs. This design of Si/SiO2@graphene superstructure elucidates a promising potential for commercial application in high-performance LIBs.
中文翻译:
用于高性能锂离子电池的 Si/SiO2@Graphene 超结构
由各种功能构建单元组成的超结构是具有极端体积变化和结构不稳定性的锂离子电池(LIB)阳极的有前途的纳米结构,例如硅基材料。在这里,通过用镁还原和沉积碳层来还原 silicalite-1,展示了制造 Si/SiO 2 @graphene 超结构的自上而下路线。超结构的成功形成取决于由覆盖在硅纳米粒子周围的桥接-SiO 2基质形成的强3D网络。此外,具有非晶桥接 SiO 2的介孔 Si/SiO 2促进石墨烯层的沉积,从而具有出色的结构稳定性和高离子/电子传输速率。优化的 Si/SiO 2 @石墨烯超结构阳极在 2 A g −1 下提供了 ≈1180 mAh g −1的出色循环寿命超过 500 个循环,出色的倍率性能为 ≈908 mAh g −1在 12 A g −1下,非常棒在 0.5 mA cm -2时的面积容量为 ≈7 mAh cm -2,以及非凡的机械稳定性。使用 LiFePO 4作为阴极的全电池测试在 290 次循环后表现出 134 mAh g -1的高容量。更值得注意的是,一系列技术揭示了 Si/SiO 2@石墨烯超结构电极可以有效地维持锂离子电池中电极和电解质之间的薄膜。这种 Si/SiO 2 @石墨烯超结构的设计阐明了在高性能 LIB 中的商业应用前景。
更新日期:2022-12-12
中文翻译:
用于高性能锂离子电池的 Si/SiO2@Graphene 超结构
由各种功能构建单元组成的超结构是具有极端体积变化和结构不稳定性的锂离子电池(LIB)阳极的有前途的纳米结构,例如硅基材料。在这里,通过用镁还原和沉积碳层来还原 silicalite-1,展示了制造 Si/SiO 2 @graphene 超结构的自上而下路线。超结构的成功形成取决于由覆盖在硅纳米粒子周围的桥接-SiO 2基质形成的强3D网络。此外,具有非晶桥接 SiO 2的介孔 Si/SiO 2促进石墨烯层的沉积,从而具有出色的结构稳定性和高离子/电子传输速率。优化的 Si/SiO 2 @石墨烯超结构阳极在 2 A g −1 下提供了 ≈1180 mAh g −1的出色循环寿命超过 500 个循环,出色的倍率性能为 ≈908 mAh g −1在 12 A g −1下,非常棒在 0.5 mA cm -2时的面积容量为 ≈7 mAh cm -2,以及非凡的机械稳定性。使用 LiFePO 4作为阴极的全电池测试在 290 次循环后表现出 134 mAh g -1的高容量。更值得注意的是,一系列技术揭示了 Si/SiO 2@石墨烯超结构电极可以有效地维持锂离子电池中电极和电解质之间的薄膜。这种 Si/SiO 2 @石墨烯超结构的设计阐明了在高性能 LIB 中的商业应用前景。