The Astronomy and Astrophysics Review ( IF 27.8 ) Pub Date : 2022-12-13 , DOI: 10.1007/s00159-022-00146-x Almudena Arcones , Friedrich-Karl Thielemann
What is the origin of the oxygen we breathe, the hydrogen and oxygen (in form of water H2O) in rivers and oceans, the carbon in all organic compounds, the silicon in electronic hardware, the calcium in our bones, the iron in steel, silver and gold in jewels, the rare earths utilized, e.g. in magnets or lasers, lead or lithium in batteries, and also of naturally occurring uranium and plutonium? The answer lies in the skies. Astrophysical environments from the Big Bang to stars and stellar explosions are the cauldrons where all these elements are made. The papers by Burbidge (Rev Mod Phys 29:547–650, 1957) and Cameron (Publ Astron Soc Pac 69:201, 1957), as well as precursors by Bethe, von Weizsäcker, Hoyle, Gamow, and Suess and Urey provided a very basic understanding of the nucleosynthesis processes responsible for their production, combined with nuclear physics input and required environment conditions such as temperature, density and the overall neutron/proton ratio in seed material. Since then a steady stream of nuclear experiments and nuclear structure theory, astrophysical models of the early universe as well as stars and stellar explosions in single and binary stellar systems has led to a deeper understanding. This involved improvements in stellar models, the composition of stellar wind ejecta, the mechanism of core-collapse supernovae as final fate of massive stars, and the transition (as a function of initial stellar mass) from core-collapse supernovae to hypernovae and long duration gamma-ray bursts (accompanied by the formation of a black hole) in case of single star progenitors. Binary stellar systems give rise to nova explosions, X-ray bursts, type Ia supernovae, neutron star, and neutron star–black hole mergers. All of these events (possibly with the exception of X-ray bursts) eject material with an abundance composition unique to the specific event and lead over time to the evolution of elemental (and isotopic) abundances in the galactic gas and their imprint on the next generation of stars. In the present review, we want to give a modern overview of the nucleosynthesis processes involved, their astrophysical sites, and their impact on the evolution of galaxies.
中文翻译:
元素的起源
我们呼吸的氧气、河流和海洋中的氢和氧(以水 H 2 O 的形式)、所有有机化合物中的碳、电子硬件中的硅、我们骨骼中的钙、人体中的铁的来源是什么?珠宝中的钢、银和金,磁铁或激光器中使用的稀土,电池中的铅或锂,以及天然存在的铀和钚?答案就在天空中。从大爆炸到恒星和恒星爆炸的天体物理环境是制造所有这些元素的大锅。 Burbidge (Rev Mod Phys 29:547–650, 1957) 和 Cameron (Publ Astron Soc Pac 69:201, 1957) 的论文以及 Bethe、von Weizsäcker、Hoyle、Gamow、Suess 和 Urey 的前身提供了对负责其生产的核合成过程的非常基本的了解,结合核物理输入和所需的环境条件,例如温度、密度和种子材料中的总体中子/质子比。从那时起,源源不断的核实验和核结构理论、早期宇宙的天体物理模型以及单星和双星系统中的恒星和恒星爆炸使人们有了更深入的了解。这涉及恒星模型的改进、恒星风喷射物的组成、核心塌缩超新星作为大质量恒星最终命运的机制,以及从核心塌缩超新星到超新星的转变(作为初始恒星质量的函数)和长持续时间在单星祖先的情况下,伽马射线暴(伴随着黑洞的形成)。双星系统会产生新星爆炸、X射线爆发、Ia型超新星、中子星和中子星-黑洞合并。 所有这些事件(可能除了 X 射线爆发)都会喷射出具有特定事件特有的丰度成分的物质,并随着时间的推移导致星系气体中元素(和同位素)丰度的演变及其对下一个事件的影响。一代明星。在本综述中,我们希望对所涉及的核合成过程、其天体物理位置及其对星系演化的影响进行现代概述。