Environmental Science and Pollution Research Pub Date : 2022-12-10 , DOI: 10.1007/s11356-022-24646-6 Yueling Yu 1 , Jia Yang 1 , Xinfei Fan 1 , Yanming Liu 2
Nitrogen-doped carbon materials (NMC) are widely used in peroxymonosulfate-based advanced oxidation processes (PMS-AOPs). Despite great efforts to improve the specific surface area of and the content of N atoms in catalysts for enhancing catalytic performance, this does not mean that the catalytic performance will improve with the increasing specific surface area and nitrogen content. Therefore, it is the key to optimize pore structure of NMC for maximizing the catalytic performance of nitrogen active sites. Herein, we synthesized the NMC as an efficient catalyst to activate PMS for the phenol removal. It can be found that the mesopore structure significantly accelerated the diffusion of reactants and might build the spatial confinement effect to improve the utilization of short life free radicals for further improving the removal efficiency. The removal efficiency of 1NMC750 (95%) with abundant mesopore channels was much higher than that of 1NMC750-0F127 (20%) with abundant micropore channels. Furthermore, the mechanism was confirmed to be radical (SO4•−, •OH) and non-radical (1O2, electron transfer) pathways. This study proposed a new insight for improving the catalytic performance of carbon materials by coordinating the pore structure.
Graphical Abstract
中文翻译:
氮掺杂介孔碳增强过硫酸盐活化以有效降解有机物
氮掺杂碳材料 (NMC) 广泛用于基于过氧单硫酸盐的高级氧化工艺 (PMS-AOP)。尽管人们努力提高催化剂的比表面积和N原子含量以提高催化性能,但这并不意味着催化性能会随着比表面积和氮含量的增加而提高。因此,优化NMC的孔结构是最大化氮活性位点催化性能的关键。在此,我们合成了 NMC 作为激活 PMS 以去除苯酚的有效催化剂。可以发现,中孔结构显着加速了反应物的扩散,并可能建立空间限制效应,提高短寿命自由基的利用率,进一步提高去除效率。具有丰富中孔通道的 1NMC750 (95%) 的去除效率远高于具有丰富微孔通道的 1NMC750-0F127 (20%)。此外,该机制被证实是激进的(SO4 •− , •OH) 和非自由基( 1 O 2 , 电子转移)途径。该研究提出了通过协调孔结构来提高碳材料催化性能的新思路。