当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ferroelectric Transistors for Memory and Neuromorphic Device Applications
Advanced Materials ( IF 27.4 ) Pub Date : 2022-12-09 , DOI: 10.1002/adma.202206864
Ik-Jyae Kim 1 , Jang-Sik Lee 1
Affiliation  

Ferroelectric materials have been intensively investigated for high-performance nonvolatile memory devices in the past decades, owing to their nonvolatile polarization characteristics. Ferroelectric memory devices are expected to exhibit lower power consumption and higher speed than conventional memory devices. However, non-complementary metal–oxide–semiconductor (CMOS) compatibility and degradation due to fatigue of traditional perovskite-based ferroelectric materials have hindered the development of high-density and high-performance ferroelectric memories in the past. The recently developed hafnia-based ferroelectric materials have attracted immense attention in the development of advanced semiconductor devices. Because hafnia is typically used in CMOS processes, it can be directly incorporated into current semiconductor technologies. Additionally, hafnia-based ferroelectrics show high scalability and large coercive fields that are advantageous for high-density memory devices. This review summarizes the recent developments in ferroelectric devices, especially ferroelectric transistors, for next-generation memory and neuromorphic applications. First, the types of ferroelectric memories and their operation mechanisms are reviewed. Then, issues limiting the realization of high-performance ferroelectric transistors and possible solutions are discussed. The experimental demonstration of ferroelectric transistor arrays, including 3D ferroelectric NAND and its operation characteristics, are also reviewed. Finally, challenges and strategies toward the development of next-generation memory and neuromorphic applications based on ferroelectric transistors are outlined.

中文翻译:

用于记忆和神经形态设备应用的铁电晶体管

由于其非易失性极化特性,在过去几十年中,铁电材料已被广泛研究用于高性能非易失性存储设备。铁电存储设备有望表现出比传统存储设备更低的功耗和更高的速度。然而,传统钙钛矿基铁电材料的非互补金属氧化物半导体(CMOS)兼容性和因疲劳引起的退化在过去阻碍了高密度和高性能铁电存储器的发展。最近开发的基于氧化铪的铁电材料在先进半导体器件的开发中引起了极大的关注。由于二氧化铪通常用于 CMOS 工艺,因此它可以直接并入当前的半导体技术中。此外,基于氧化铪的铁电体显示出高可扩展性和大的矫顽场,这有利于高密度存储设备。这篇综述总结了用于下一代存储器和神经形态应用的铁电器件,尤其是铁电晶体管的最新发展。首先,回顾了铁电存储器的类型及其工作机制。然后,讨论了限制高性能铁电晶体管实现的问题和可能的解决方案。还回顾了铁电晶体管阵列的实验演示,包括 3D 铁电 NAND 及其操作特性。最后,概述了开发基于铁电晶体管的下一代存储器和神经形态应用的挑战和策略。基于二氧化铪的铁电体显示出高可扩展性和大的矫顽场,这有利于高密度存储设备。这篇综述总结了用于下一代存储器和神经形态应用的铁电器件,尤其是铁电晶体管的最新发展。首先,回顾了铁电存储器的类型及其工作机制。然后,讨论了限制高性能铁电晶体管实现的问题和可能的解决方案。还回顾了铁电晶体管阵列的实验演示,包括 3D 铁电 NAND 及其操作特性。最后,概述了开发基于铁电晶体管的下一代存储器和神经形态应用的挑战和策略。基于二氧化铪的铁电体显示出高可扩展性和大的矫顽场,这有利于高密度存储设备。这篇综述总结了用于下一代存储器和神经形态应用的铁电器件,尤其是铁电晶体管的最新发展。首先,回顾了铁电存储器的类型及其工作机制。然后,讨论了限制高性能铁电晶体管实现的问题和可能的解决方案。还回顾了铁电晶体管阵列的实验演示,包括 3D 铁电 NAND 及其操作特性。最后,概述了开发基于铁电晶体管的下一代存储器和神经形态应用的挑战和策略。
更新日期:2022-12-09
down
wechat
bug