当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A 3D Framework with Li3N–Li2S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium-Metal Anode
Advanced Materials ( IF 27.4 ) Pub Date : 2022-12-08 , DOI: 10.1002/adma.202209028 Shuyan Ni 1 , Mengtian Zhang 1 , Chuang Li 1 , Runhua Gao 1 , Jinzhi Sheng 1 , Xin Wu 1 , Guangmin Zhou 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-12-08 , DOI: 10.1002/adma.202209028 Shuyan Ni 1 , Mengtian Zhang 1 , Chuang Li 1 , Runhua Gao 1 , Jinzhi Sheng 1 , Xin Wu 1 , Guangmin Zhou 1
Affiliation
The Li-metal anode has been recognized as the most promising anode for its high theoretical capacity and low reduction potential. However, the major drawbacks of Li metal, such as high reactivity and large volume expansion, can lead to dendrite growth and solid electrolyte interface (SEI) fracture. An in situ artificial inorganic SEI layer, consisting of lithium nitride and lithium sulfide, is herein reported to address the dendrite growth issues. Porous graphene oxide films are doped with sulfur and nitrogen (denoted as SNGO) to work as an effective lithium host. The SNGO film enables the in situ formation of an inorganic-rich SEI layer, which facilitates the transport of Li-ions, improves SEI mechanical strength, and avoids SEI fracture. In addition, COMSOL simulation results reveal that the microchannels fabricated by the 3D printing technique further shorten the Li-ion transfer pathways and homogenize heat and stress distribution in the batteries. As a result, the assembled anode shows low capacity fading of 0.1% per cycle at 2 C rate with the sulfur cathode. In addition, the high lithium utilization of the SNGO host enables the anode to provide a stable capacity at low negative/positive electrode ratios under 3 in LiS batteries.
中文翻译:
具有 Li3N–Li2S 固体电解质中间相和快速离子传输通道的 3D 框架,用于稳定的锂金属阳极
锂金属负极以其高理论容量和低还原电位而被公认为最有前途的负极。然而,锂金属的主要缺点,如高反应性和大体积膨胀,会导致枝晶生长和固体电解质界面(SEI)断裂。本文报道了一种由氮化锂和硫化锂组成的原位人造无机 SEI 层,用于解决枝晶生长问题。多孔氧化石墨烯薄膜掺杂有硫和氮(表示为 SNGO),作为有效的锂主体。SNGO 薄膜能够原位形成富含无机物的 SEI 层,这有利于锂离子的传输,提高 SEI 的机械强度,并避免 SEI 断裂。此外,COMSOL 仿真结果表明,通过 3D 打印技术制造的微通道进一步缩短了锂离子传输路径,并使电池中的热量和应力分布均匀。因此,组装好的阳极在 2 C 倍率下与硫阴极相比显示出每次循环 0.1% 的低容量衰减。此外,SNGO 主体的高锂利用率使负极能够在低于 3 in Li 的低负极/正极比下提供稳定的容量 S 电池。
更新日期:2022-12-08
中文翻译:
具有 Li3N–Li2S 固体电解质中间相和快速离子传输通道的 3D 框架,用于稳定的锂金属阳极
锂金属负极以其高理论容量和低还原电位而被公认为最有前途的负极。然而,锂金属的主要缺点,如高反应性和大体积膨胀,会导致枝晶生长和固体电解质界面(SEI)断裂。本文报道了一种由氮化锂和硫化锂组成的原位人造无机 SEI 层,用于解决枝晶生长问题。多孔氧化石墨烯薄膜掺杂有硫和氮(表示为 SNGO),作为有效的锂主体。SNGO 薄膜能够原位形成富含无机物的 SEI 层,这有利于锂离子的传输,提高 SEI 的机械强度,并避免 SEI 断裂。此外,COMSOL 仿真结果表明,通过 3D 打印技术制造的微通道进一步缩短了锂离子传输路径,并使电池中的热量和应力分布均匀。因此,组装好的阳极在 2 C 倍率下与硫阴极相比显示出每次循环 0.1% 的低容量衰减。此外,SNGO 主体的高锂利用率使负极能够在低于 3 in Li 的低负极/正极比下提供稳定的容量 S 电池。