NPG Asia Materials ( IF 8.6 ) Pub Date : 2022-12-09 , DOI: 10.1038/s41427-022-00448-7
Zibing Yu , Houbo Zhou , Fengxia Hu , Chang Liu , Shuaikang Yuan , Donghui Wang , Jiazheng Hao , Yihong Gao , Yangxin Wang , Bingjie Wang , Zhengying Tian , Yuan Lin , Cheng Zhang , Zhuo Yin , Jing Wang , Yunzhong Chen , Yunliang Li , Jirong Sun , Tongyun Zhao , Baogen Shen
|
The barocaloric effect (BCE) has emerged as an intense research topic in regard to efficient and clean solid-state refrigeration. Materials with solid-liquid phase transitions (SL-PTs) usually show huge melting entropies but cannot work in full solid-state refrigeration. Here, we report a colossal barocaloric effect realized by exploiting high entropy inherited from huge disorder of liquid phase in amorphous polyethylene glycol (PEG), which is solidified by introducing 5 wt.% polyethylene terephthalate (PET). Transmission electron microscopy (TEM) combined with X-ray diffraction (XRD) demonstrates the amorphous nature of the high-temperature phase after fixation by PET. Although PEG loses its –OH end mobility in amorphous solid, high entropy still retains owing to the retained high degrees of freedom of its molecular chains. The remaining entropy of amorphous PEG is up to 83% of that of liquid PEG in PEG10000/PET15000, and the barocaloric entropy change reaches ΔSp ∼ 416 J·kg−1·K−1 under a low pressure of 0.1 GPa, which exceeds the performance of most other BCE materials. Infrared spectra combined with density function theory (DFT) calculations disclose conformational change from the liquid to amorphous state, which explains the origin of the large entropy retained and hence the colossal BCE of the solidified PEG. This research opens a new avenue for exploring full solid-state barocaloric materials by utilizing genetic high entropy from huge disordering of liquid phases in various materials with SL-PTs.
中文翻译:

利用固化聚乙二醇的无定形高熵实现巨大的气压效应
气压效应 (BCE) 已成为高效清洁固态制冷的热门研究课题。具有固液相变 (SL-PT) 的材料通常表现出巨大的熔化熵,但不能在全固态制冷中工作。在这里,我们报告了通过利用从无定形聚乙二醇 (PEG) 中液相的巨大无序继承的高熵实现的巨大气压效应,该聚乙二醇通过引入 5 wt.% 聚对苯二甲酸乙二醇酯 (PET) 固化。透射电子显微镜 (TEM) 结合 X 射线衍射 (XRD) 证明了 PET 固定后高温相的无定形性质。尽管 PEG 在无定形固体中失去了其 –OH 末端的流动性,但由于其分子链保留了高自由度,高熵仍然存在。p ∼ 416 J·kg −1 ·K −1在0.1 GPa的低压下,这超过了大多数其他BCE材料的性能。红外光谱与密度函数理论 (DFT) 计算相结合揭示了从液态到无定形状态的构象变化,这解释了保留的大熵的起源以及固化 PEG 的巨大 BCE。这项研究通过利用 SL-PT 的各种材料中液相的巨大无序化产生的遗传高熵,为探索全固态气压材料开辟了一条新途径。