The Leadership Quarterly ( IF 9.1 ) Pub Date : 2022-12-05 , DOI: 10.1016/j.leaqua.2022.101658 George C. Banks , Roxanne Ross , Allison A. Toth , Scott Tonidandel , Atefeh Mahdavi Goloujeh , Wenwen Dou , Ryan Wesslen
To advance ethical leadership using signaling theory, the current work presents a mixture of inductive and deductive studies. Using a constant comparative analysis method, Study 1 involved coding CEO letters to shareholders (n = 10,919 sentences). Eight verbal ethical leader signals (ELSs) emerged and were associated with emotions (e.g., righteous anger, pride). In a set of preregistered experiments, ELSs were found to lead to evaluations of ethical leadership (Study 2: n = 264; Cohen’s d = 0.26). Study 3 illustrated that ELSs led to a reduction in financial theft (n = 434; Cohen’s d = 0.20). Study 4 showed that ELSs led to an improvement in performance (n = 434; Cohen’s d = 0.18) but had little effect on extra role behavior (Cohen’s d = 0.06). Finally, in Study 5 a machine learning algorithm, DeepEthics, was created to automatically score text (ROC =. 84; r = 0.85 between human and algorithm scores), such as emails and meeting transcripts, for ELSs in future research. Recommendations for theory and practice are discussed.
中文翻译:
使用定性、实验和数据科学方法对道德领导信号进行三角测量
为了使用信号理论推进道德领导,目前的工作提出了归纳和演绎研究的混合体。使用恒定的比较分析方法,研究 1 涉及编码 CEO 致股东的信(n = 10,919 句)。八种口头道德领导信号 (ELS) 出现并与情绪相关(例如,正义的愤怒、骄傲)。在一组预先注册的实验中,发现 ELS 会导致对道德领导力的评估(研究 2:n = 264;Cohen 的d = 0.26)。研究 3 表明 ELS 导致金融盗窃减少(n = 434;Cohen 的d = 0.20)。研究 4 表明,ELS 导致绩效改善(n = 434;Cohen's d = 0.18)但对额外角色行为几乎没有影响(Cohen's d = 0.06)。最后,在研究 5 中,创建了一种机器学习算法 DeepEthics,用于自动对文本(ROC =.84;人类和算法分数之间的r = 0.85)进行评分,例如电子邮件和会议记录,用于未来研究中的 ELS。讨论了理论和实践建议。