当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lithium Extraction Mechanism in Li-Rich Li2MnO3 Involving Oxygen Hole Formation and Dimerization
Chemistry of Materials ( IF 7.2 ) Pub Date : 2016-09-15 00:00:00 , DOI: 10.1021/acs.chemmater.6b02870 Hungru Chen 1 , M. Saiful Islam 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2016-09-15 00:00:00 , DOI: 10.1021/acs.chemmater.6b02870 Hungru Chen 1 , M. Saiful Islam 1
Affiliation
Lithium-rich oxide electrodes with layered structures have attracted considerable interest because they can deliver high energy densities for lithium-ion batteries. However, there is significant debate regarding their redox chemistry. It is apparent that the mechanism of lithium extraction from lithium-rich Li2MnO3 is not fully understood, especially in relation to the observed O2 evolution and structural transformation. Here, delithiation and kinetic processes in Li2MnO3 are investigated using ab initio simulation techniques employing high level hybrid functionals as they reproduce accurately the electronic structure of oxygen hole states. We show that Li extraction is charge-compensated by oxidation of the oxide anion, so that the overall delithiation reaction involves lattice oxygen loss. Localized holes on oxygen (O–) are formed as the first step but are not stable leading to oxygen dimerization (with O–O ∼ 1.3 Å) and eventually to the formation of molecular O2. Oxygen dimerization facilitates Mn migration onto octahedral sites in the vacated lithium layers. The results suggest that reversible oxygen redox without major structural changes is only possible if the localized oxygen holes are stabilized and oxygen dimerization suppressed. Such an understanding is important for the future optimization of new lithium-rich cathode materials for high energy density batteries.
中文翻译:
富锂Li 2 MnO 3中锂的萃取机理涉及氧孔的形成和二聚化
具有分层结构的富锂氧化物电极吸引了相当大的兴趣,因为它们可以为锂离子电池提供高能量密度。然而,关于它们的氧化还原化学存在大量争论。显然,还没有完全理解从富锂的Li 2 MnO 3中提取锂的机理,特别是与观察到的O 2的析出和结构转变有关的机理。在这里,从头开始研究Li 2 MnO 3中的脱锂和动力学过程。模拟技术采用高级混合功能,因为它们可以精确地重现氧空穴态的电子结构。我们表明,锂的提取通过氧化阴离子的氧化来补偿电荷,因此整个脱锂反应涉及晶格氧的损失。对氧的局部孔(O - )形成为在第一步骤中,但不应分子的O的形成稳定,导致二聚化氧(具有O-O〜1.3埃),并最终2。氧二聚作用有助于Mn迁移到空出的锂层中的八面体位置上。结果表明,只有在局部氧孔稳定且氧二聚化得到抑制的情况下,没有重大结构变化的可逆氧氧化还原才是可能的。这种理解对于将来优化用于高能量密度电池的新型富锂阴极材料非常重要。
更新日期:2016-09-15
中文翻译:
富锂Li 2 MnO 3中锂的萃取机理涉及氧孔的形成和二聚化
具有分层结构的富锂氧化物电极吸引了相当大的兴趣,因为它们可以为锂离子电池提供高能量密度。然而,关于它们的氧化还原化学存在大量争论。显然,还没有完全理解从富锂的Li 2 MnO 3中提取锂的机理,特别是与观察到的O 2的析出和结构转变有关的机理。在这里,从头开始研究Li 2 MnO 3中的脱锂和动力学过程。模拟技术采用高级混合功能,因为它们可以精确地重现氧空穴态的电子结构。我们表明,锂的提取通过氧化阴离子的氧化来补偿电荷,因此整个脱锂反应涉及晶格氧的损失。对氧的局部孔(O - )形成为在第一步骤中,但不应分子的O的形成稳定,导致二聚化氧(具有O-O〜1.3埃),并最终2。氧二聚作用有助于Mn迁移到空出的锂层中的八面体位置上。结果表明,只有在局部氧孔稳定且氧二聚化得到抑制的情况下,没有重大结构变化的可逆氧氧化还原才是可能的。这种理解对于将来优化用于高能量密度电池的新型富锂阴极材料非常重要。