Nature Communications ( IF 14.7 ) Pub Date : 2022-12-07 , DOI: 10.1038/s41467-022-35172-x Siyuan Kong 1 , Pengyun Gong 2 , Wen-Feng Zeng 3, 4 , Biyun Jiang 1 , Xinhang Hou 2 , Yang Zhang 1 , Huanhuan Zhao 1 , Mingqi Liu 1 , Guoquan Yan 1 , Xinwen Zhou 1 , Xihua Qiao 2 , Mengxi Wu 1 , Pengyuan Yang 1, 5 , Chao Liu 2, 3 , Weiqian Cao 1, 5
Large-scale intact glycopeptide identification has been advanced by software tools. However, tools for quantitative analysis remain lagging behind, which hinders exploring the differential site-specific glycosylation. Here, we report pGlycoQuant, a generic tool for both primary and tandem mass spectrometry-based intact glycopeptide quantitation. pGlycoQuant advances in glycopeptide matching through applying a deep learning model that reduces missing values by 19–89% compared with Byologic, MSFragger-Glyco, Skyline, and Proteome Discoverer, as well as a Match In Run algorithm for more glycopeptide coverage, greatly expanding the quantitative function of several widely used search engines, including pGlyco 2.0, pGlyco3, Byonic and MSFragger-Glyco. Further application of pGlycoQuant to the N-glycoproteomic study in three different metastatic HCC cell lines quantifies 6435 intact N-glycopeptides and, together with in vitro molecular biology experiments, illustrates site 979-core fucosylation of L1CAM as a potential regulator of HCC metastasis. We expected further applications of the freely available pGlycoQuant in glycoproteomic studies.
中文翻译:
pGlycoQuant 具有深度残差网络,用于完整糖肽水平的定量糖蛋白组学
软件工具已经推进了大规模完整糖肽的鉴定。然而,定量分析工具仍然落后,这阻碍了对差异位点特异性糖基化的探索。在此,我们报告了 pGlycoQuant,这是一种用于基于初级和串联质谱的完整糖肽定量的通用工具。 pGlycoQuant 通过应用深度学习模型在糖肽匹配方面取得了进步,与 Byologic、MSFragger-Glyco、Skyline 和 Proteome Discoverer 相比,该模型将缺失值减少了 19-89%,同时还采用了 Match In Run 算法来实现更多糖肽覆盖,从而极大地扩展了糖肽匹配范围。几个广泛使用的搜索引擎的定量功能,包括pGlyco 2.0、pGlyco3、Byonic和MSFragger-Glyco。 pGlycoQuant 进一步应用于三种不同转移性 HCC 细胞系的 N-糖蛋白组学研究,定量了 6435 个完整的 N-糖肽,并结合体外分子生物学实验,说明了 L1CAM 的位点 979 核心岩藻糖基化作为 HCC 转移的潜在调节剂。我们期望免费提供的 pGlycoQuant 在糖蛋白质组学研究中得到进一步应用。