当前位置:
X-MOL 学术
›
Carbon Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Single-atom electrocatalysts for lithium–sulfur chemistry: Design principle, mechanism, and outlook
Carbon Energy ( IF 19.5 ) Pub Date : 2022-12-05 , DOI: 10.1002/cey2.286 Yingze Song 1 , Luwei Zou 2, 3 , Chaohui Wei 2 , Yu Zhou 3 , Yue Hu 4
Carbon Energy ( IF 19.5 ) Pub Date : 2022-12-05 , DOI: 10.1002/cey2.286 Yingze Song 1 , Luwei Zou 2, 3 , Chaohui Wei 2 , Yu Zhou 3 , Yue Hu 4
Affiliation
Lithium–sulfur batteries (LSBs) have been regarded as one of the promising candidates for the next-generation “lithium-ion battery beyond” owing to their high energy density and due to the low cost of sulfur. However, the main obstacles encountered in the commercial implementation of LSBs are the notorious shuttle effect, retarded sulfur redox kinetics, and uncontrolled dendrite growth. Accordingly, single-atom catalysts (SACs), which have ultrahigh catalytic efficiency, tunable coordination configuration, and light weight, have shown huge potential in the field of LSBs to date. This review summarizes the recent research progress of SACs applied as multifunctional components in LSBs. The design principles and typical synthetic strategies of SACs toward effective Li–S chemistry as well as the working mechanism promoting sulfur conversion reactions, inhibiting the lithium polysulfide shuttle effect, and regulating Li+ nucleation are comprehensively illustrated. Potential future directions in terms of research on SACs for the realization of commercially viable LSBs are also outlined.
中文翻译:
用于锂硫化学的单原子电催化剂:设计原理、机理和展望
锂硫电池(LSB)由于其高能量密度和硫的低成本而被认为是下一代“超越锂离子电池”的有前途的候选者之一。然而,LSB 商业化实施中遇到的主要障碍是臭名昭著的穿梭效应、延迟的硫氧化还原动力学和不受控制的枝晶生长。因此,单原子催化剂(SACs)具有超高催化效率、可调配位构型和重量轻,迄今为止在LSBs领域显示出巨大的潜力。本综述总结了 SAC 作为 LSB 多功能组件的最新研究进展。SACs 的设计原则和典型的合成策略对有效的 Li-S 化学以及促进硫转化反应的工作机制,+成核得到全面说明。还概述了为实现商业上可行的 LSB 而研究 SAC 的潜在未来方向。
更新日期:2022-12-05
中文翻译:
用于锂硫化学的单原子电催化剂:设计原理、机理和展望
锂硫电池(LSB)由于其高能量密度和硫的低成本而被认为是下一代“超越锂离子电池”的有前途的候选者之一。然而,LSB 商业化实施中遇到的主要障碍是臭名昭著的穿梭效应、延迟的硫氧化还原动力学和不受控制的枝晶生长。因此,单原子催化剂(SACs)具有超高催化效率、可调配位构型和重量轻,迄今为止在LSBs领域显示出巨大的潜力。本综述总结了 SAC 作为 LSB 多功能组件的最新研究进展。SACs 的设计原则和典型的合成策略对有效的 Li-S 化学以及促进硫转化反应的工作机制,+成核得到全面说明。还概述了为实现商业上可行的 LSB 而研究 SAC 的潜在未来方向。