当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Acoustically-Induced Water Frustration for Enhanced Hydrogen Evolution Reaction in Neutral Electrolytes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-12-04 , DOI: 10.1002/aenm.202203164
Yemima Ehrnst 1 , Peter C. Sherrell 2 , Amgad R. Rezk 1 , Leslie Y. Yeo 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-12-04 , DOI: 10.1002/aenm.202203164
Yemima Ehrnst 1 , Peter C. Sherrell 2 , Amgad R. Rezk 1 , Leslie Y. Yeo 1
Affiliation
![]() |
A novel strategy utilizing high-frequency (10 MHz) hybrid sound waves to dramatically enhance hydrogen evolution reactions (HER) in notoriously difficult neutral electrolytes by modifying their network coordination state is presented. Herein, the practical limitations associated with existing electrolyzer technology is addressed, including the need for highly corrosive electrolytes and expensive electrocatalysts, by redefining conceptually-poor hydrogen electrocatalysts in neutral electrolytes. The improvement in HER performance is attributed to the unique capability of the intense local electromechanical coupling arising from the acoustic-forcing to ‘frustrate’ the tetrahedrally-coordinated hydrogen bond network of water molecules at the electrode–electrolyte interface, resulting in the generation of a high concentration of “free” water molecules that are more readily able to access catalytic sites on the unmodified polycrystalline electrode. Together with the other synergistic effects that accompany the acoustic excitation (e.g., hydronium ion generation, convective relaxation of diffusion mass transfer limitations, and prevention of bubble build-up and their removal from the electrode), the resultant overpotential reduction of 1.4 V at −100 mA cm−2 and corresponding 14-fold increase in current density, together with a net-positive energy saving of 27.3%, showcases the potential of the technology as a scalable platform for effectively enhancing the efficiency of green hydrogen production.
中文翻译:
声诱导水挫败增强中性电解质中的析氢反应
提出了一种利用高频 (10 MHz) 混合声波通过修改其网络配位状态来显着增强众所周知困难的中性电解质中的析氢反应 (HER) 的新策略。在此,通过重新定义中性电解质中概念性较差的氢电催化剂,解决了与现有电解槽技术相关的实际限制,包括对高腐蚀性电解质和昂贵电催化剂的需求。HER 性能的改善归因于声学强迫产生的强烈局部机电耦合的独特能力,以“挫败”电极-电解质界面处水分子的四面体配位氢键网络,导致产生高浓度的“游离”水分子,这些水分子更容易进入未改性多晶电极上的催化位点。连同伴随声学激发的其他协同效应(例如,水合氢离子的产生,扩散传质限制的对流弛豫,以及防止气泡积聚和它们从电极上移除),在 - 下产生的过电位降低 1.4 V 100毫安厘米-2和相应的 14 倍电流密度增加,以及 27.3% 的净正节能,展示了该技术作为有效提高绿色氢生产效率的可扩展平台的潜力。
更新日期:2022-12-04
中文翻译:

声诱导水挫败增强中性电解质中的析氢反应
提出了一种利用高频 (10 MHz) 混合声波通过修改其网络配位状态来显着增强众所周知困难的中性电解质中的析氢反应 (HER) 的新策略。在此,通过重新定义中性电解质中概念性较差的氢电催化剂,解决了与现有电解槽技术相关的实际限制,包括对高腐蚀性电解质和昂贵电催化剂的需求。HER 性能的改善归因于声学强迫产生的强烈局部机电耦合的独特能力,以“挫败”电极-电解质界面处水分子的四面体配位氢键网络,导致产生高浓度的“游离”水分子,这些水分子更容易进入未改性多晶电极上的催化位点。连同伴随声学激发的其他协同效应(例如,水合氢离子的产生,扩散传质限制的对流弛豫,以及防止气泡积聚和它们从电极上移除),在 - 下产生的过电位降低 1.4 V 100毫安厘米-2和相应的 14 倍电流密度增加,以及 27.3% 的净正节能,展示了该技术作为有效提高绿色氢生产效率的可扩展平台的潜力。