了解膜蛋白的组装机制和功能是生化研究的一个基本问题。在膜蛋白中,G蛋白偶联受体(GPCR)代表了人体内最大的一类膜蛋白,长期以来一直被认为以单体的形式发挥作用。如今,GPCR 的寡聚组装已被广泛接受,但其功能重要性和治疗干预在很大程度上仍未得到探索。这部分是由于膜蛋白异源生产的困难。具有内源性内质网衍生结构的无细胞蛋白质合成(CFPS)已被证明是解决这一问题的技术。在本研究中,我们首次使用真核细胞游离裂解物从其原体 BR1 和 BR2 研究了异聚 GPCR 的概念 CFPS,即 B 型γ -氨基丁酸受体 (GABA B )。使用基于荧光的邻近连接测定,我们提供了共定位的证据,从而表明异二聚化。我们通过生物发光共振能量转移饱和测定证明了异二聚体组装,提供了通过 CFPS 异二聚体 GPCR 的可制造性。此外,我们还展示了荧光正构拮抗剂的结合,证明了 GPCR 的 CFPS 与药理学应用相结合的可行性。这些结果为异聚 GPCR 的合成提供了一个简单而强大的实验平台,并为蛋白质-蛋白质相互作用的建模开辟了新的视角。因此,所提出的技术能够将蛋白质组装体靶向作为疾病相关二聚体的药理干预的新界面。
"点击查看英文标题和摘要"
Oligomerization of the heteromeric γ-aminobutyric acid receptor GABAB in a eukaryotic cell-free system
Understanding the assembly mechanism and function of membrane proteins is a fundamental problem in biochemical research. Among the membrane proteins, G protein-coupled receptors (GPCRs) represent the largest class in the human body and have long been considered to function as monomers. Nowadays, the oligomeric assembly of GPCRs is widely accepted, although the functional importance and therapeutic intervention remain largely unexplored. This is partly due to difficulties in the heterologous production of membrane proteins. Cell-free protein synthesis (CFPS) with its endogenous endoplasmic reticulum-derived structures has proven as a technique to address this issue. In this study, we investigate for the first time the conceptual CFPS of a heteromeric GPCR, the γ-aminobutyric acid receptor type B (GABAB), from its protomers BR1 and BR2 using a eukaryotic cell-free lysate. Using a fluorescence-based proximity ligation assay, we provide evidence for colocalization and thus suggesting heterodimerization. We prove the heterodimeric assembly by a bioluminescence resonance energy transfer saturation assay providing the manufacturability of a heterodimeric GPCR by CFPS. Additionally, we show the binding of a fluorescent orthosteric antagonist, demonstrating the feasibility of combining the CFPS of GPCRs with pharmacological applications. These results provide a simple and powerful experimental platform for the synthesis of heteromeric GPCRs and open new perspectives for the modelling of protein–protein interactions. Accordingly, the presented technology enables the targeting of protein assemblies as a new interface for pharmacological intervention in disease-relevant dimers.