Nature Communications ( IF 14.7 ) Pub Date : 2022-12-02 , DOI: 10.1038/s41467-022-34203-x Fangyuan Ye 1, 2 , Shuo Zhang 1 , Jonathan Warby 2 , Jiawei Wu 3 , Emilio Gutierrez-Partida 2 , Felix Lang 2 , Sahil Shah 2 , Elifnaz Saglamkaya 2 , Bowen Sun 2 , Fengshuo Zu 4 , Safa Shoaee 2 , Haifeng Wang 3 , Burkhard Stiller 2 , Dieter Neher 2 , Wei-Hong Zhu 1 , Martin Stolterfoht 2 , Yongzhen Wu 1
Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.
中文翻译:
通过电子传输碳硼烷克服倒置钙钛矿太阳能电池中 C60 诱导的界面复合
倒置钙钛矿太阳能电池在钙钛矿表面和整个钙钛矿/C 60界面仍然存在显着的非辐射复合损失,限制了基于钙钛矿的单结和多结光伏电池的未来发展。因此,迫切需要更有效的层间或传输层。为了解决这些重组损失,我们引入邻碳硼烷作为具有球形分子结构和三维芳香性的夹层材料。基于各种实验技术,我们表明,用苯氨基修饰的邻碳硼烷可有效钝化钙钛矿表面,并从根本上消除钙钛矿/C 60上的非辐射复合损失具有高热稳定性的界面。我们进一步证明了碳硼烷作为电子传输材料的潜力,促进了电子提取,同时阻挡了界面上的空穴。由此产生的倒置钙钛矿太阳能电池可提供超过 23% 的功率转换效率和 110 mV 的低非辐射电压损失,并在最大功率点跟踪 400 小时后保持 >97% 的初始效率。总的来说,设计的基于碳硼烷的夹层同时实现了钝化、电子传输和空穴阻挡,为更高效、更稳定的钙钛矿太阳能电池铺平了道路。