当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Design of the Polyamide Layer Structure of Nanofiltration Membranes by Sacrificing Hydrolyzable Groups toward Enhanced Separation Performance
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2022-11-29 , DOI: 10.1021/acs.est.2c04232 Kunpeng Wang 1 , Wenjie Fu 2 , Xiao-Mao Wang 1 , Chenyang Xu 1 , Yawei Gao 1 , Yanling Liu 3 , Xiaoyuan Zhang 1 , Xia Huang 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2022-11-29 , DOI: 10.1021/acs.est.2c04232 Kunpeng Wang 1 , Wenjie Fu 2 , Xiao-Mao Wang 1 , Chenyang Xu 1 , Yawei Gao 1 , Yanling Liu 3 , Xiaoyuan Zhang 1 , Xia Huang 1
Affiliation
Nanofiltration (NF) is an effective technology for removing trace organic contaminants (TrOCs), while the inherent trade-off effect between water permeance and solute rejections hinders its widespread application in water treatment. Herein, we propose a novel scheme of “monomers with sacrificial groups” to regulate the microstructure of the polyamide active layer via introducing a hydrolyzable ester group onto piperazine to control the diffusion and interfacial polymerization process. The achieved benefits include narrowing the pore size, improving the interpore connectivity, enhancing the microporosity, and reducing the active layer thickness, which collectively realized the simultaneous improvement of water permeance and enhancement of TrOCs rejection performance. The resulting membranes were superior to both the control and commercial membranes, especially in water-TrOCs selectivity. The effects of using the new monomers on the membrane physicochemical properties were systematically studied, and underlying mechanisms for the enhanced separation performance were further revealed by simulating the polymerization process through density functional theory calculation and measuring the trans-interface diffusion rate of monomers. This study demonstrates a novel promising NF membrane synthesis strategy by designing the structure of reaction monomers for achieving excellent rejection of TrOCs with a low energy input in water treatment.
中文翻译:
通过牺牲可水解基团对纳滤膜的聚酰胺层结构进行分子设计以提高分离性能
纳滤 (NF) 是去除痕量有机污染物 (TrOCs) 的有效技术,而水渗透性和溶质截留率之间固有的权衡效应阻碍了其在水处理中的广泛应用。在此,我们提出了一种新的“具有牺牲基团的单体”方案,通过在哌嗪上引入可水解的酯基来控制扩散和界面聚合过程,从而调节聚酰胺活性层的微观结构。所取得的好处包括缩小孔径、改善孔间连通性、提高微孔率和降低活性层厚度,共同实现了透水性的同时提高和 TrOCs 截留性能的增强。所得膜优于对照膜和商业膜,特别是在水-TrOCs 选择性方面。通过密度泛函理论计算模拟聚合过程和测量单体的跨界面扩散速率,系统地研究了使用新型单体对膜理化性质的影响,并进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。通过密度泛函理论计算模拟聚合过程并测量单体的跨界面扩散速率,进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。通过密度泛函理论计算模拟聚合过程并测量单体的跨界面扩散速率,进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。
更新日期:2022-11-29
中文翻译:
通过牺牲可水解基团对纳滤膜的聚酰胺层结构进行分子设计以提高分离性能
纳滤 (NF) 是去除痕量有机污染物 (TrOCs) 的有效技术,而水渗透性和溶质截留率之间固有的权衡效应阻碍了其在水处理中的广泛应用。在此,我们提出了一种新的“具有牺牲基团的单体”方案,通过在哌嗪上引入可水解的酯基来控制扩散和界面聚合过程,从而调节聚酰胺活性层的微观结构。所取得的好处包括缩小孔径、改善孔间连通性、提高微孔率和降低活性层厚度,共同实现了透水性的同时提高和 TrOCs 截留性能的增强。所得膜优于对照膜和商业膜,特别是在水-TrOCs 选择性方面。通过密度泛函理论计算模拟聚合过程和测量单体的跨界面扩散速率,系统地研究了使用新型单体对膜理化性质的影响,并进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。通过密度泛函理论计算模拟聚合过程并测量单体的跨界面扩散速率,进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。通过密度泛函理论计算模拟聚合过程并测量单体的跨界面扩散速率,进一步揭示了增强分离性能的潜在机制。本研究通过设计反应单体的结构展示了一种新的有前途的 NF 膜合成策略,以在水处理中以低能量输入实现对 TrOCs 的出色排斥。