Nature Materials ( IF 37.2 ) Pub Date : 2022-11-28 , DOI: 10.1038/s41563-022-01384-1 Dhriti Nepal 1 , Saewon Kang 2 , Katarina M Adstedt 2 , Krishan Kanhaiya 3 , Michael R Bockstaller 4 , L Catherine Brinson 5 , Markus J Buehler 6 , Peter V Coveney 7 , Kaushik Dayal 8 , Jaafar A El-Awady 9 , Luke C Henderson 10 , David L Kaplan 11 , Sinan Keten 12 , Nicholas A Kotov 13 , George C Schatz 14 , Silvia Vignolini 15 , Fritz Vollrath 16 , Yusu Wang 17 , Boris I Yakobson 18, 19 , Vladimir V Tsukruk 2 , Hendrik Heinz 3
Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.
中文翻译:
分层结构的仿生纳米复合材料
下一代结构材料有望成为轻质、高强度和坚韧的复合材料,具有内嵌的感知、适应、自我修复、变形和恢复功能。这篇综述重点介绍了仿生纳米复合材料的最新发展和概念,强调了结构、相间和限制的定制,以实现动态和协同反应。我们重点介绍了具有独特机械性能组合的天然材料的基石示例,这些组合基于在环境条件下在水环境中生产的相对简单的构建块。特别关注跨多个长度尺度的结构层次结构,以实现多功能性和稳健性。我们进一步讨论了结合生物和合成成分的最新进展、趋势和新机遇,最先进的表征和建模方法,用于评估多个长度尺度下受自然启发的设计和机械响应的物理原理。这些多学科方法促进了单个材料特性的协同增强,并改进了下一代结构材料在多长度尺度上的预测性和规范性设计,适用于广泛的应用。