当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells
Advanced Materials ( IF 27.4 ) Pub Date : 2022-11-28 , DOI: 10.1002/adma.202208604 Haidi Yang 1 , Weijie Chen 1 , Yuan Yu 2 , Yunxiu Shen 1 , Heyi Yang 1 , Xinqi Li 1 , Ben Zhang 1 , Haiyang Chen 1 , Qinrong Cheng 1 , Zhichao Zhang 1 , Wei Qin 3 , Jing-De Chen 4 , Jian-Xin Tang 4 , Yaowen Li 1, 5, 6 , Yongfang Li 1, 5, 7
Advanced Materials ( IF 27.4 ) Pub Date : 2022-11-28 , DOI: 10.1002/adma.202208604 Haidi Yang 1 , Weijie Chen 1 , Yuan Yu 2 , Yunxiu Shen 1 , Heyi Yang 1 , Xinqi Li 1 , Ben Zhang 1 , Haiyang Chen 1 , Qinrong Cheng 1 , Zhichao Zhang 1 , Wei Qin 3 , Jing-De Chen 4 , Jian-Xin Tang 4 , Yaowen Li 1, 5, 6 , Yongfang Li 1, 5, 7
Affiliation
The charge carriers of single-junction solar cells can be fluently extracted and then collected by electrodes, leading to weak charge carrier accumulation and low energy loss (Eloss). However, in tandem solar cells (TSCs), it is a considerable challenge to obtain a balance between the densities of the holes and electrons extracted from the two respective subcells to facilitate an efficient recombination in the interconnecting layer (ICL). Herein, a charge-carrier-dynamic management strategy for inorganic perovskite/organic TSCs is proposed, centered on the simultaneous regulation of the defect states of CsPbI1.9Br1.1 perovskite in the front subcell and hole transport ability from the perovskite to ICL. The target hole density on the perovskite surface and the hole loss before reaching the ICL are significantly improved. As a result, the hole/electron density offset in the ICL can be effectively narrowed, leading to a balanced charge carrier recombination, which reduces the Eloss in TSCs. The resulting inorganic perovskite/organic 0.062-cm2 TSC exhibits a remarkable power conversion efficiency (PCE) of 23.17% with an ultrahigh open-circuit voltage (Voc) of 2.15 V, and the PCE of the 1.004-cm2 device (21.69%) exhibited a weak size-dependence. This charge-carrier-dynamic management strategy can also effectively enhance the operational and ultraviolet-light stabilities of the TSCs.
中文翻译:
调节互连层中的载流子复合以提高单片钙钛矿/有机串联太阳能电池的效率和稳定性
单结太阳能电池的电荷载流子可以被电极流畅地提取然后收集,导致电荷载流子积累弱,能量损失低(E损失)。然而,在串联太阳能电池 (TSC) 中,要在从两个相应子电池提取的空穴密度和电子密度之间取得平衡以促进互连层 (ICL) 中的有效复合是一项相当大的挑战。在此,提出了无机钙钛矿/有机 TSC 的电荷载流子动态管理策略,以同时调节 CsPbI 1.9 Br 1.1的缺陷态为中心前子电池中的钙钛矿和从钙钛矿到 ICL 的空穴传输能力。钙钛矿表面的目标空穴密度和到达 ICL 之前的空穴损失都有显着改善。因此,可以有效地缩小 ICL 中的空穴/电子密度偏移,从而实现平衡的载流子复合,从而减少TSC 中的E损失。由此产生的无机钙钛矿/有机 0.062-cm 2 TSC 具有 23.17% 的显着功率转换效率 (PCE),具有 2.15 V 的超高开路电压 ( V oc ),PCE 为 1.004-cm 2设备 (21.69%) 表现出较弱的尺寸依赖性。这种载流子动态管理策略还可以有效提高 TSC 的操作和紫外光稳定性。
更新日期:2022-11-28
中文翻译:
调节互连层中的载流子复合以提高单片钙钛矿/有机串联太阳能电池的效率和稳定性
单结太阳能电池的电荷载流子可以被电极流畅地提取然后收集,导致电荷载流子积累弱,能量损失低(E损失)。然而,在串联太阳能电池 (TSC) 中,要在从两个相应子电池提取的空穴密度和电子密度之间取得平衡以促进互连层 (ICL) 中的有效复合是一项相当大的挑战。在此,提出了无机钙钛矿/有机 TSC 的电荷载流子动态管理策略,以同时调节 CsPbI 1.9 Br 1.1的缺陷态为中心前子电池中的钙钛矿和从钙钛矿到 ICL 的空穴传输能力。钙钛矿表面的目标空穴密度和到达 ICL 之前的空穴损失都有显着改善。因此,可以有效地缩小 ICL 中的空穴/电子密度偏移,从而实现平衡的载流子复合,从而减少TSC 中的E损失。由此产生的无机钙钛矿/有机 0.062-cm 2 TSC 具有 23.17% 的显着功率转换效率 (PCE),具有 2.15 V 的超高开路电压 ( V oc ),PCE 为 1.004-cm 2设备 (21.69%) 表现出较弱的尺寸依赖性。这种载流子动态管理策略还可以有效提高 TSC 的操作和紫外光稳定性。