当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MOF-derived CoNC@rGO/amine-rich@rGO/fluorinated-epoxy nanocomposites with EMI shielding, mechanical robustness, superamphiphobicity and long-term anticorrosion properties
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-11-24 , DOI: 10.1016/j.cej.2022.140542 Kun Li , Liuwenlin Han , Xiaomu Wang , Feng Gao , Junying Zhang , Jue Cheng
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-11-24 , DOI: 10.1016/j.cej.2022.140542 Kun Li , Liuwenlin Han , Xiaomu Wang , Feng Gao , Junying Zhang , Jue Cheng
Along with the rapid development of electronic devices and communication systems, electromagnetic (EM) radiation pollution has become an increasingly serious problem. However, it is greatly challenging to achieve absorption-dominated electromagnetic interference (EMI) shielding and robust multifunctional simultaneously. In this work, we synthesize zeolitic imidazolate framework (ZIF67)-derived CoNC@reduced graphene oxide (rGO) and amine-rich surface rGO (NH@rGO), and subsequently fabricate NH-CoNC@rGO-fluorinated epoxy (FEP) nanocomposites by the microwave irradiation strategy, and this is the first time to obtain composite combining excellent EMI shielding, mechanical robustness, superamphiphobicity and long-term anticorrosion properties. Wherein, 3-(perfluoro--octyl) propenoxide (PFOP) provides the perfluorinated long chains, which improves both mechanical properties via internal antiplasticization effect, and the dispersity and loading of nanofiller via CF⋯HN/π interactions; 4,4′-hexafluoroisopropylidenediphenol diglycidyl ether (FAEP) increases the compatibility and mechanical robustness; NH@rGO provides the good interfacial bonding, dielectric attenuation and anode protection; CoNC@rGO endows suitable magnetic and dipolar relaxation loss, micro/nanostructures and cathodic protection. Remarkably, the optimized nanocomposite exhibits satisfied tensile and impact strength (64.4 MPa, 33.7 kJ/m), EMI shielding properties (56 dB), thermal conductivity (1.13 W·m·K), superhydrophobicity (154°) and superoleophobicity (151°), self-cleaning, good chemical and mechanical robustness, Joule heating capacity and long-term anticorrosion (30 d). Furthermore, the microwave irradiation effect, multiple EMI shielding and anti-corrosion mechanism have been discussed in detail. This study provides an efficient guideline for designing multicomponent and multidimensional epoxy nanocomposite with EMI shielding and robust multifunctional property in aerospace, underwater equipment, electronic devices and precision construction protection.
中文翻译:
MOF衍生的CoNC@rGO/富含胺的@rGO/氟化环氧树脂纳米复合材料具有EMI屏蔽、机械鲁棒性、超双疏性和长期防腐性能
随着电子设备和通信系统的快速发展,电磁(EM)辐射污染已成为日益严重的问题。然而,同时实现吸收主导的电磁干扰 (EMI) 屏蔽和强大的多功能性具有很大的挑战性。在这项工作中,我们合成了沸石咪唑骨架(ZIF67)衍生的CoNC@还原氧化石墨烯(rGO)和富含胺的表面rGO(NH@rGO),然后通过制备NH-CoNC@rGO-氟化环氧树脂(FEP)纳米复合材料微波辐射策略,这是首次获得兼具优异的EMI屏蔽、机械鲁棒性、超双疏性和长期防腐性能的复合材料。其中,3-(全氟-辛基)环氧丙烷(PFOP)提供全氟长链,通过内部抗塑化作用提高机械性能,并通过CF…HN/π相互作用提高纳米填料的分散性和负载量; 4,4′-六氟异亚丙基二酚二缩水甘油醚(FAEP)提高相容性和机械强度; NH@rGO提供良好的界面结合、介电衰减和阳极保护; CoNC@rGO 具有适当的磁和偶极弛豫损耗、微/纳米结构和阴极保护。值得注意的是,优化后的纳米复合材料表现出令人满意的拉伸和冲击强度(64.4 MPa,33.7 kJ/m)、EMI屏蔽性能(56 dB)、导热性(1.13 W·m·K)、超疏水性(154°)和超疏油性(151°) )、自洁性、良好的化学和机械鲁棒性、焦耳热能力和长期防腐(30 d)。此外,还详细讨论了微波辐射效应、多重EMI屏蔽和防腐机理。 这项研究为在航空航天、水下设备、电子设备和精密建筑防护领域设计具有EMI屏蔽和强大多功能性能的多组分和多维环氧纳米复合材料提供了有效的指导。
更新日期:2022-11-24
中文翻译:
MOF衍生的CoNC@rGO/富含胺的@rGO/氟化环氧树脂纳米复合材料具有EMI屏蔽、机械鲁棒性、超双疏性和长期防腐性能
随着电子设备和通信系统的快速发展,电磁(EM)辐射污染已成为日益严重的问题。然而,同时实现吸收主导的电磁干扰 (EMI) 屏蔽和强大的多功能性具有很大的挑战性。在这项工作中,我们合成了沸石咪唑骨架(ZIF67)衍生的CoNC@还原氧化石墨烯(rGO)和富含胺的表面rGO(NH@rGO),然后通过制备NH-CoNC@rGO-氟化环氧树脂(FEP)纳米复合材料微波辐射策略,这是首次获得兼具优异的EMI屏蔽、机械鲁棒性、超双疏性和长期防腐性能的复合材料。其中,3-(全氟-辛基)环氧丙烷(PFOP)提供全氟长链,通过内部抗塑化作用提高机械性能,并通过CF…HN/π相互作用提高纳米填料的分散性和负载量; 4,4′-六氟异亚丙基二酚二缩水甘油醚(FAEP)提高相容性和机械强度; NH@rGO提供良好的界面结合、介电衰减和阳极保护; CoNC@rGO 具有适当的磁和偶极弛豫损耗、微/纳米结构和阴极保护。值得注意的是,优化后的纳米复合材料表现出令人满意的拉伸和冲击强度(64.4 MPa,33.7 kJ/m)、EMI屏蔽性能(56 dB)、导热性(1.13 W·m·K)、超疏水性(154°)和超疏油性(151°) )、自洁性、良好的化学和机械鲁棒性、焦耳热能力和长期防腐(30 d)。此外,还详细讨论了微波辐射效应、多重EMI屏蔽和防腐机理。 这项研究为在航空航天、水下设备、电子设备和精密建筑防护领域设计具有EMI屏蔽和强大多功能性能的多组分和多维环氧纳米复合材料提供了有效的指导。