当前位置: X-MOL 学术Annu. Rev. Stat. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Innovation Diffusion Processes: Concepts, Models, and Predictions
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2022-11-19 , DOI: 10.1146/annurev-statistics-040220-091526
Mariangela Guidolin 1 , Piero Manfredi 2
Affiliation  

Innovation diffusion processes have attracted considerable research attention for their interdisciplinary character, which combines theories and concepts from disciplines such as mathematics, physics, statistics, social sciences, marketing, economics, and technological forecasting. The formal representation of innovation diffusion processes historically used epidemic models borrowed from biology, departing from the logistic equation, under the hypothesis that an innovation spreads in a social system through communication between people like an epidemic through contagion. This review integrates basic innovation diffusion models built upon the Bass model, primarily from the marketing literature, with a number of ideas from the epidemiological literature in order to offer a different perspective on innovation diffusion by focusing on critical diffusions, which are key for the progress of human communities. The article analyzes three key issues: barriers to diffusion, centrality of word-of-mouth, and the management of policy interventions to assist beneficial diffusions and to prevent harmful ones. We focus on deterministic innovation diffusion models described by ordinary differential equations.

中文翻译:


创新扩散过程:概念、模型和预测



创新扩散过程因其跨学科特征而引起了相当多的研究关注,它结合了数学、物理学、统计学、社会科学、市场营销、经济学和技术预测等学科的理论和概念。创新扩散过程的正式表示历来使用从生物学中借用的流行病模型,背离了逻辑方程,假设创新通过人与人之间的交流在社会系统中传播,就像流行病通过传染一样。这篇综述将主要来自营销文献的基于 Bass 模型的基本创新扩散模型与流行病学文献中的一些想法相结合,以便通过关注关键扩散(对人类社区进步至关重要)来提供关于创新扩散的不同视角。本文分析了三个关键问题:传播障碍、口碑的中心地位以及政策干预管理,以协助有益的传播并防止有害的传播。我们专注于由常微分方程描述的确定性新息扩散模型。
更新日期:2022-11-19
down
wechat
bug