当前位置:
X-MOL 学术
›
Adv. Eng. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Acoustic Properties of Aerogels: Current Status and Prospects
Advanced Engineering Materials ( IF 3.4 ) Pub Date : 2022-11-17 , DOI: 10.1002/adem.202201137 Tatiana Budtova 1 , Tapio Lokki 2 , Sadeq Malakooti 3 , Ameya Rege 4 , Hongbing Lu 5 , Barbara Milow 4 , Jaana Vapaavuori 6 , Stephanie L. Vivod 3
Advanced Engineering Materials ( IF 3.4 ) Pub Date : 2022-11-17 , DOI: 10.1002/adem.202201137 Tatiana Budtova 1 , Tapio Lokki 2 , Sadeq Malakooti 3 , Ameya Rege 4 , Hongbing Lu 5 , Barbara Milow 4 , Jaana Vapaavuori 6 , Stephanie L. Vivod 3
Affiliation
Noise reduction remains an important priority in the modern society, in particular, for urban areas and highly populated cities. Insulation of buildings and transport systems such as cars, trains, and airplanes has accelerated the need to develop advanced materials. Various porous materials, such as commercially available foams and granular and fibrous materials, are commonly used for sound mitigating applications. In this review, a special class of advanced porous materials, aerogels, is examined, and an overview of the current experimental and theoretical status of their acoustic properties is provided. Aerogels can be composed of inorganic matter, synthetic or natural polymers, as well as organic/inorganic composites and hybrids. Aerogels are highly porous nanostructured materials with a large number of meso- and small macropores; the mechanisms of sound absorption partly differ from those of traditional porous absorbers possessing large macropores. The understanding of the acoustic properties of aerogels is far from being complete, and experimental results remain scattered. It is demonstrated that the structure of the aerogel provides a complex three-dimensional architecture ideally suited for promising high-performance materials for acoustic mitigation systems. This is in addition to the numerous other desirable properties that include low density, low thermal conductivity, and low refractive index.
中文翻译:
气凝胶的声学特性:现状与展望
降噪仍然是现代社会的一个重要优先事项,特别是对于城市地区和人口稠密的城市。建筑物和运输系统(例如汽车、火车和飞机)的绝缘加速了开发先进材料的需求。各种多孔材料,例如市售的泡沫材料以及颗粒状和纤维状材料,通常用于消音应用。在这篇综述中,研究了一种特殊的高级多孔材料气凝胶,并概述了其声学特性的当前实验和理论状态。气凝胶可由无机物、合成或天然聚合物以及有机/无机复合物和杂化物组成。气凝胶是高度多孔的纳米结构材料,具有大量的中孔和小孔;吸声机制部分不同于具有大孔隙的传统多孔吸声材料。对气凝胶声学特性的了解远未完成,实验结果仍然零散。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。
更新日期:2022-11-17
中文翻译:
气凝胶的声学特性:现状与展望
降噪仍然是现代社会的一个重要优先事项,特别是对于城市地区和人口稠密的城市。建筑物和运输系统(例如汽车、火车和飞机)的绝缘加速了开发先进材料的需求。各种多孔材料,例如市售的泡沫材料以及颗粒状和纤维状材料,通常用于消音应用。在这篇综述中,研究了一种特殊的高级多孔材料气凝胶,并概述了其声学特性的当前实验和理论状态。气凝胶可由无机物、合成或天然聚合物以及有机/无机复合物和杂化物组成。气凝胶是高度多孔的纳米结构材料,具有大量的中孔和小孔;吸声机制部分不同于具有大孔隙的传统多孔吸声材料。对气凝胶声学特性的了解远未完成,实验结果仍然零散。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。结果表明,气凝胶的结构提供了一个复杂的三维结构,非常适合用于声学缓解系统的有前途的高性能材料。这是除许多其他理想特性之外的特性,包括低密度、低导热性和低折射率。