当前位置:
X-MOL 学术
›
Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Simulation of Diffusion and Competitive Sorption of CH4 and CO2 in Shale Nanopores
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-11-16 , DOI: 10.1021/acs.energyfuels.2c03163 Ying Sun 1 , Xiaoqiang Liu 2 , Zhongxi Han 3 , Guiyun Tang 4
Energy & Fuels ( IF 5.2 ) Pub Date : 2022-11-16 , DOI: 10.1021/acs.energyfuels.2c03163 Ying Sun 1 , Xiaoqiang Liu 2 , Zhongxi Han 3 , Guiyun Tang 4
Affiliation
Based on the competitive adsorption of CH4 and CO2, molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) are used to study the mechanism of increasing shale gas recovery by carbon dioxide injection. The influence of different factors on the diffusion capacity of CH4 in unrestricted space and restricted space is analyzed, and the diffusion capacities of CH4 and CO2 in shale nanopores are compared. Under different conditions, the difference in the sorption amount and sorption heat of CH4 and CO2 is studied, and the displacement simulation of CH4 and CO2 is conducted. The obtained results show that the diffusion capacity of CH4 in restricted space is much smaller than that in unrestricted space, and the difference between them is related to temperature, pressure, and pore size. When pressure exceeds 10 MPa, the difference gradually decreases. The diffusion capacity of CO2 is weaker than that of CH4 under the same conditions, which contributes to the retention of CO2. There is a competitive sorption relationship between CH4 and CO2. The sorption amount and sorption heat of CH4 and CO2 are affected by the combination of pressure, temperature, density ratio, pore size, and mineral type. The adsorption capacity of CO2 is much higher than that of CH4. When sorption conditions are more favorable, the adsorption difference between CH4 and CO2 will become larger. In shale nanopores, CO2 can replace CH4 that is adsorbed on the pore surface to improve shale gas recovery.
中文翻译:
页岩纳米孔中 CH4 和 CO2 扩散和竞争吸附的分子模拟
基于CH 4和CO 2的竞争吸附,分子动力学(MD)和大规范蒙特卡罗(GCMC)被用于研究通过注入二氧化碳提高页岩气采收率的机理。分析了不同因素对CH 4在非受限空间和受限空间扩散能力的影响,比较了CH 4和CO 2在页岩纳米孔隙中的扩散能力。研究了不同条件下CH 4 和CO 2 的吸附量和吸附热的差异,并对CH 4和CO 2进行了驱替模拟进行。所得结果表明,CH 4在受限空间内的扩散能力远小于非受限空间内的扩散能力,两者的差异与温度、压力和孔径有关。当压力超过 10 MPa 时,差异逐渐减小。CO 2的扩散能力在相同条件下比CH 4弱,这有助于CO 2的保留。CH 4和CO 2之间存在竞争吸附关系。CH 4和CO 2的吸附量和吸附热受压力、温度、密度比、孔隙大小和矿物类型的综合影响。CO 2的吸附能力远高于CH 4。吸附条件越有利,CH 4和CO 2的吸附差异越大。在页岩纳米孔隙中,CO 2可以替代吸附在孔隙表面的CH 4以提高页岩气采收率。
更新日期:2022-11-16
中文翻译:
页岩纳米孔中 CH4 和 CO2 扩散和竞争吸附的分子模拟
基于CH 4和CO 2的竞争吸附,分子动力学(MD)和大规范蒙特卡罗(GCMC)被用于研究通过注入二氧化碳提高页岩气采收率的机理。分析了不同因素对CH 4在非受限空间和受限空间扩散能力的影响,比较了CH 4和CO 2在页岩纳米孔隙中的扩散能力。研究了不同条件下CH 4 和CO 2 的吸附量和吸附热的差异,并对CH 4和CO 2进行了驱替模拟进行。所得结果表明,CH 4在受限空间内的扩散能力远小于非受限空间内的扩散能力,两者的差异与温度、压力和孔径有关。当压力超过 10 MPa 时,差异逐渐减小。CO 2的扩散能力在相同条件下比CH 4弱,这有助于CO 2的保留。CH 4和CO 2之间存在竞争吸附关系。CH 4和CO 2的吸附量和吸附热受压力、温度、密度比、孔隙大小和矿物类型的综合影响。CO 2的吸附能力远高于CH 4。吸附条件越有利,CH 4和CO 2的吸附差异越大。在页岩纳米孔隙中,CO 2可以替代吸附在孔隙表面的CH 4以提高页岩气采收率。