Biology and Fertility of Soils ( IF 5.1 ) Pub Date : 2022-11-16 , DOI: 10.1007/s00374-022-01681-6 Xiaoting Wang , Ruirui Chen , Evangelos Petropoulos , Bingqian Yu , Xiangui Lin , Youzhi Feng
Carbon (C) and nitrogen (N) coupling regulated by intensified microbial activity and turnover in the rhizosphere hotspots are essential for balancing C-N budgets, sustaining agroecosystem productivity and mitigating global climate changes. However, it remains unclear whether and how the (different) spatial distribution of root-derived C from rhizosphere to non-rhizosphere will regulate N transport and transformation. To address this, a rhizobox (100 × 80 × 80 cm) experiment was conducted on soils from the same site using 13C-CO2 (for 2 weeks) and 15 N-urea labelling for two cultivation systems, upland wheat and paddy rice. The paddy system showed larger proportion (43.5 versus 10.1%) of root-derived 13C retained into bulk soil, wider spatial transportation of both C and N (> 40 mm versus < 6.7 mm), higher proportion of plant-N uptake from soil pool (86.4 versus 62.3%), and higher loss of N derived from fertilizer pool (29.7 versus 13.2%), compared to the upland system. We identified that in paddy rice, larger amounts of N can be horizontally transported from bulk soil to the rhizosphere; the effects of root-derived C on N transformation mediated by soil microorganisms are more profound; higher plant uptake of soil-N as well as higher loss of fertilizer-N than those of upland wheat. Our results suggest that the transport and transformation of N are under the regulation of the spatial distribution of root-derived C and the associated microbial activities. This paves a new path towards proper management for weighing nutrient availability against fertilization reduction and balancing productivity with sustainability.
中文翻译:
在水稻和旱地土壤上标记 13 C 和 15 N 后,根系衍生的 C 分布驱动 N 运输和转化
碳 (C) 和氮 (N) 耦合受根际热点微生物活动和周转强化的调节,对于平衡 CN 预算、维持农业生态系统生产力和缓解全球气候变化至关重要。然而,尚不清楚根源碳从根际到非根际的(不同)空间分布是否以及如何调节氮的运输和转化。为了解决这个问题,在同一地点的土壤上进行了根瘤箱 (100 × 80 × 80 cm) 实验,使用13 C-CO 2(持续 2 周)和15 N-尿素标记两种栽培系统,陆地小麦和水稻. 水稻系统显示出更大比例(43.5 比 10.1%)的根源13C 保留在大块土壤中,C 和 N 的空间运输更广泛(> 40 毫米对 < 6.7 毫米),植物从土壤库中吸收氮的比例更高(86.4 对 62.3%),以及来自肥料库的氮流失更多(29.7 对 13.2%),与高地系统相比。我们发现,在水稻中,大量的 N 可以从大块土壤水平运输到根际;根源碳对土壤微生物介导的氮转化的影响更为深远;与陆地小麦相比,植物对土壤-N 的吸收更高,对肥料-N 的损失也更高。我们的结果表明,N 的运输和转化受根源 C 的空间分布和相关微生物活动的调节。