当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laser Lift-Off Technologies for Ultra-Thin Emerging Electronics: Mechanisms, Applications, and Progress
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2022-11-13 , DOI: 10.1002/admt.202201186
Fangcheng Wang 1, 2 , Qiang Liu 1 , Jianwen Xia 3 , Mingqi Huang 3 , Xuefan Wang 1 , Wenxue Dai 1 , Guoping Zhang 1 , Daquan Yu 4 , Jinhui Li 1 , Rong Sun 1
Affiliation  

Due to the advantages of non-contact processing, high efficiency, high precision, and superior controllability, laser lift-off (LLO) technologies exhibit excellent material applicability and process compatibility in the lift-off of ultra-thin electronic devices. This brings new opportunities for large-scale manufacturing of emerging electronics that meet ultra-thin, fragile, and poor high-temperature resistance. However, this opportunity also comes with formidable challenges from the complex mechanisms of laser-matter interactions, which hinder comprehensive exploration and fundamental understanding. By elaborating the laser-material interactions, the photothermal effect, “cold” processing, shockwave effect, and cavitation effect in LLO process from multiple perspectives, this review is devoted to discussing the latest progress and sustainable application of LLO technologies in emerging electronics that are developing toward ultra-thin, miniaturization, and integration, such as wafer level packaging, displays, energy harvesters, sensors, and memories. Finally, starting from the fundamental principles of material design, light field regulation, and intelligent control system, the challenges and new approaches faced by LLO technologies are explored and fully integrated with future innovative manufacturing concepts and device structures.

中文翻译:

用于超薄新兴电子产品的激光剥离技术:机制、应用和进展

激光剥离(LLO)技术具有非接触加工、高效率、高精度、可控性等优点,在超薄电子器件的剥离中表现出优异的材料适用性和工艺兼容性。这为满足超薄、易碎、耐高温性能差的新兴电子产品的规模化制造带来了新机遇。然而,这一机遇也伴随着激光与物质相互作用的复杂机制带来的巨大挑战,阻碍了全面探索和基础理解。通过多角度阐述LLO过程中的激光-材料相互作用、光热效应、“冷”加工、冲击波效应和空化效应,本篇综述致力于探讨LLO技术在晶圆级封装、显示器、能量收集器、传感器和存储器等向超薄、微型化和集成化发展的新兴电子产品中的最新进展和可持续应用。最后,从材料设计、光场调控和智能控制系统的基本原理出发,探索LLO技术面临的挑战和新途径,并与未来的创新制造理念和器件结构充分结合。
更新日期:2022-11-13
down
wechat
bug