当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fabrication of the Microenvironment and Active Structure of Single-Rh-Site Catalysts for Efficient Hydroformylation of Olefins
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2022-11-11 , DOI: 10.1021/acssuschemeng.2c04674 Guangjun Ji 1 , CunYao Li 1 , Xiangsong Lin 2 , Xiao-Feng Wu 1 , Li Yan 1 , Yunjie Ding 1, 3
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2022-11-11 , DOI: 10.1021/acssuschemeng.2c04674 Guangjun Ji 1 , CunYao Li 1 , Xiangsong Lin 2 , Xiao-Feng Wu 1 , Li Yan 1 , Yunjie Ding 1, 3
Affiliation
To enhance the catalytic performance of single-metal-site catalysts (SMSCs), regulating the interaction between the active site and substrate is crucial but challenging. Herein, a series of Rh-based SMSCs (Rh/m-3vPAr3-POLs) were designed and synthesized on P-abundant porous organic polymers (POPs) with different electronegativities of frame phosphine. The Rh–P active sites on various POPs were modified by functional groups (−F, −H, −Me, or −OMe). Both the formation of HRh(CO)2(P)2 active species and the insertion of CO were promoted via the electron-accepting property of fluorine, which endowed Rh/m-3vPAr3-POL-F with the best activity (TOF = 3000 h–1), selectivity (>88.1%), l/b ratio (>6.8), and stability (1000 h) for 1-octene hydroformylation in a fixed-bed reactor. Multiple characterization techniques (extended X-ray absorption fine structure, scanning transmission electron microscopy, in situ Fourier-transform infrared spectroscopy, etc.) and density functional theory calculations were employed to get further insights into the microenvironment and active structure of Rh-based SMSCs. This work offers a promising avenue for designing efficient and stable SMSCs in heterogeneous catalysis.
中文翻译:
用于烯烃高效加氢甲酰化的单 Rh 位点催化剂微环境和活性结构的构建
为了提高单金属位点催化剂 (SMSCs) 的催化性能,调节活性位点与底物之间的相互作用至关重要,但也具有挑战性。在此,在具有不同骨架膦电负性的富含磷的多孔有机聚合物 (POP) 上设计并合成了一系列 Rh 基 SMSCs (Rh/ m -3vPAR 3 -POLs)。各种持久性有机污染物上的 Rh–P 活性位点被官能团(-F、-H、-Me 或-OMe)修饰。HRh(CO) 2 (P) 2活性物种的形成和CO的插入均通过氟的受电子特性促进,赋予Rh/ m -3vPAr 3 -POL-F最佳活性(TOF = 3000小时–1 )、选择性 (>88.1%)、l / b比 (>6.8) 和稳定性 (1000 h),用于固定床反应器中的 1-辛烯加氢甲酰化。采用多种表征技术(扩展X射线吸收精细结构、扫描透射电子显微镜、原位傅里叶变换红外光谱等)和密度泛函理论计算,进一步深入了解Rh基SMSCs的微环境和活性结构. 这项工作为在多相催化中设计高效稳定的 SMSC 提供了一条有前途的途径。
更新日期:2022-11-11
中文翻译:
用于烯烃高效加氢甲酰化的单 Rh 位点催化剂微环境和活性结构的构建
为了提高单金属位点催化剂 (SMSCs) 的催化性能,调节活性位点与底物之间的相互作用至关重要,但也具有挑战性。在此,在具有不同骨架膦电负性的富含磷的多孔有机聚合物 (POP) 上设计并合成了一系列 Rh 基 SMSCs (Rh/ m -3vPAR 3 -POLs)。各种持久性有机污染物上的 Rh–P 活性位点被官能团(-F、-H、-Me 或-OMe)修饰。HRh(CO) 2 (P) 2活性物种的形成和CO的插入均通过氟的受电子特性促进,赋予Rh/ m -3vPAr 3 -POL-F最佳活性(TOF = 3000小时–1 )、选择性 (>88.1%)、l / b比 (>6.8) 和稳定性 (1000 h),用于固定床反应器中的 1-辛烯加氢甲酰化。采用多种表征技术(扩展X射线吸收精细结构、扫描透射电子显微镜、原位傅里叶变换红外光谱等)和密度泛函理论计算,进一步深入了解Rh基SMSCs的微环境和活性结构. 这项工作为在多相催化中设计高效稳定的 SMSC 提供了一条有前途的途径。