Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-11-12 , DOI: 10.1016/j.cej.2022.140321 Shanshan Qiao , Yuqing Chen , Yanhong Tang , Jili Yuan , Jiachao Shen , Danyu Zhang , Yi Du , Ziru Li , Dingwang Yuan , Haifang Tang , Chengbin Liu
Cu2O is promising to catalytically convert CO2 into C2 products by overcoming the instability and slow multi-electron transfer. Regulating catalytic construction and interface microenvironment is challenging to stabilize Cu2O and selectively convert CO2 to C2+ hydrocarbons. A photocatalyst (Cu2O@Cu-CN) of oxygen vacancy–rich Cu2O@Cu symbiont embedded in N-doped carbon skeleton is achieved by ligand competition strategy. The Schottky junction and the hydrophobic microenvironment in the catalyst together stabilize the active site against the Cu2O redox reaction. The hydrophobic interface can make the catalyst favorable for trapping CO2. The asymmetric interface with oxygen vacancy can enhance the adsorption and activation of CO2 and *CO, thus reducing the energy barrier for the formation of *OCCO intermediates and promoting the coupling conversion of *OCCO to C2H4. The C2H4 evolution rate reaches 46.27 μmolC2H4 gcat-1 h-1 with a high selectivity of 40.3% using triethanolamine (TEOA) as a sacrificial agent, and the apparent quantum yield (AQY) is as high as 14.41% (λ = 420 nm). The C2H4 evolution rate is 2.10 μmolC2H4 gcat-1 h-1 in water without TEOA. Moreover, the productive rate of C2H4 still maintains 95.37% after lasting 20 h, showing a robust long−term stability.
中文翻译:
富含氧空位的 Cu2O@Cu 具有疏水性微环境,用于高选择性 CC 偶联生成 C2H4
Cu 2 O有望通过克服不稳定性和缓慢的多电子转移将CO 2催化转化为C 2产物。调节催化结构和界面微环境对于稳定 Cu 2 O 和选择性地将 CO 2转化为 C 2+烃具有挑战性。通过配体竞争策略实现了嵌入N掺杂碳骨架中的富含氧空位的Cu 2 O@Cu共生体的光催化剂(Cu 2 O@Cu-CN)。催化剂中的肖特基结和疏水性微环境共同稳定了活性位点对抗 Cu 2O 氧化还原反应。疏水界面可以使催化剂有利于捕获CO 2。具有氧空位的不对称界面可以增强CO 2和*CO的吸附和活化,从而降低*OCCO中间体形成的能垒,促进*OCCO耦合转化为C 2 H 4。以三乙醇胺(TEOA)为牺牲剂, C 2 H 4析出速率达到46.27 μmol C2H4 g cat -1 h -1,选择性高达40.3%,表观量子产率(AQY)高达14.41%( λ = 420 纳米)。C 2 H 4在没有 TEOA 的水中释放速率为 2.10 μmol C2H4 g cat -1 h -1。此外,C 2 H 4的产率在持续 20 h 后仍保持在 95.37%,表现出较强的长期稳定性。