甲状腺乳头状癌 (PTC) 表明随着转移进展患者的生存率显着降低。肿瘤进展会受到新陈代谢的影响,包括抗氧化谷胱甘肽 (GSH)。谷胱甘肽过氧化物酶 4 (GPX4) 是一种硒酶,它使用 GSH 作为辅助因子,在氧化应激增加期间调节细胞膜的脂质过氧化。肿瘤细胞中的 GPX4 抑制可诱导铁死亡。本研究旨在检查铁死亡作为有效靶向甲状腺癌 (TC) 细胞的潜在关键途径。我们用 (1S,3R)-RSL3 (RSL3)(一种 GPX4 的小分子抑制剂)处理人类 TC 细胞(K1、MDA-T68、MDA-T32、TPC1),并检查了对铁死亡、肿瘤细胞存活和迁移的影响,球体形成、氧化应激、DNA 损伤修复反应和体外 mTOR 信号通路。GPX4 抑制激活铁死亡,诱导 TC 细胞死亡,活性氧迅速升高,并在体外有效阻止细胞迁移。mTOR 信号通路的抑制触发自噬。GPX4 基因敲低反映了 RSL3 对 mTOR 通路抑制的影响。RSL3 通过抑制核磷蛋白 1 (NPM1) 的磷酸化来抑制 DNA 损伤修复反应。因此,在 TC 的临床前体外模型中观察到铁死亡的有效诱导、GPX4 依赖性新的 mTOR 通路抑制和 DNA 损伤修复反应支持 GPX4 靶向治疗晚期耐药甲状腺癌的治疗益处。GPX4 基因敲低反映了 RSL3 对 mTOR 通路抑制的影响。RSL3 通过抑制核磷蛋白 1 (NPM1) 的磷酸化来抑制 DNA 损伤修复反应。因此,在 TC 的临床前体外模型中观察到铁死亡的有效诱导、GPX4 依赖性新的 mTOR 通路抑制和 DNA 损伤修复反应支持 GPX4 靶向治疗晚期耐药甲状腺癌的治疗益处。GPX4 基因敲低反映了 RSL3 对 mTOR 通路抑制的影响。RSL3 通过抑制核磷蛋白 1 (NPM1) 的磷酸化来抑制 DNA 损伤修复反应。因此,在 TC 的临床前体外模型中观察到铁死亡的有效诱导、GPX4 依赖性新的 mTOR 通路抑制和 DNA 损伤修复反应支持 GPX4 靶向治疗晚期耐药甲状腺癌的治疗益处。
"点击查看英文标题和摘要"
Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer
Papillary thyroid carcinoma (PTC) demonstrates significantly reduced patient survival with metastatic progression. Tumor progression can be influenced by metabolism, including antioxidant glutathione (GSH). Glutathione peroxidase 4 (GPX4) is a selenoenzyme that uses GSH as a co-factor to regulate lipid peroxidation of cell membranes during increased oxidative stress. GPX4 suppression in tumor cells can induce ferroptosis. This study aims to examine ferroptosis as a potentially critical pathway in effective targeting of thyroid cancer (TC) cells. We treated human TC cells (K1, MDA-T68, MDA-T32, TPC1) with (1S,3R)-RSL3 (RSL3), a small-molecule inhibitor of GPX4 and examined the effects on ferroptosis, tumor cell survival and migration, spheroid formation, oxidative stress, DNA damage repair response, and mTOR signaling pathway in vitro. GPX4 inhibition activated ferroptosis, inducing TC cell death, rapid rise in reactive oxygen species and effectively arrested cell migration in vitro. Suppression of mTOR signaling pathway triggered autophagy. GPX4 genetic knockdown mirrored RSL3 effect on mTOR pathway suppression. RSL3 subdued DNA damage repair response by suppressing phosphorylation of nucleophosmin 1 (NPM1). Thus, observed potent induction of ferroptosis, GPX4-dependent novel suppression of mTOR pathway and DNA damage repair response in preclinical in vitro model of TC supports GPX4 targeting for therapeutic benefit in advanced therapy-resistant thyroid cancers.