当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hofmeister Effect-Enhanced Hydration Chemistry of Hydrogel for High-Efficiency Solar-Driven Interfacial Desalination
Advanced Materials ( IF 27.4 ) Pub Date : 2022-11-11 , DOI: 10.1002/adma.202207262 Hongqi Zou 1 , Xiangtong Meng 1 , Xin Zhao 1 , Jieshan Qiu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-11-11 , DOI: 10.1002/adma.202207262 Hongqi Zou 1 , Xiangtong Meng 1 , Xin Zhao 1 , Jieshan Qiu 1
Affiliation
Solar-driven water evaporation technology holds great potential for mitigating the global water scarcity due to its high energy conversion efficiency. Lowering the vaporization enthalpy of water is key to boost the performance of solar-driven desalination. Herein, a highly hydratable hydrogel (PMH) network, consisting of modified needle coke as photothermal material and polyvinyl alcohol (PVA) as hydratable matrix, is crafted via simple physical cross-linking method. When capitalizing on the PMH as evaporator for 3.5 wt% NaCl solution, a high evaporation rate of 3.18 kg m−2 h−1 under one sun illumination is deliver ed, unexpectedly outperforming that in pure water (2.53 kg m−2 h−1). More importantly, the PMH shows a robust desalination durability, thus enabling a self-cleaning system. Further investigations reveal that the outstanding evaporation performance of PMH in brine roots in its hydrability tuned by chaotropic Cl−, wherein the Cl− can mediate the hydration chemistry of PVA in PMH and suppress related crystallinity, thus contributing to the increased content of intermediate water and the lowered vaporization enthalpy of brine. This work first scrutinizes the Hofmeister effect on the evaporation behavior of PMH evaporator in brine and provides insights for high-efficiency solar-driven interfacial desalination.
中文翻译:
用于高效太阳能驱动界面脱盐的霍夫迈斯特效应增强水凝胶水化化学
太阳能驱动的水蒸发技术由于其高能量转换效率,在缓解全球水资源短缺方面具有巨大潜力。降低水的蒸发焓是提高太阳能驱动海水淡化性能的关键。在此,通过简单的物理交联方法制备了一种高度水化的水凝胶(PMH)网络,该网络由作为光热材料的改性针状焦和作为可水化基质的聚乙烯醇(PVA)组成。当利用 PMH 作为 3.5 wt% NaCl 溶液的蒸发器时,在一次阳光照射下可提供 3.18 kg m -2 h -1的高蒸发率 ,出人意料地优于纯水(2.53 kg m -2 h -1). 更重要的是,PMH 显示出强大的脱盐耐久性,从而实现自清洁系统。进一步的研究表明,离液 Cl -调节了 PMH 在盐水根中的出色蒸发性能,其中 Cl -可以调节 PMH 中 PVA 的水化化学并抑制相关结晶度,从而有助于增加中间水含量和盐水的汽化焓降低。这项工作首先仔细研究了 Hofmeister 效应对 PMH 蒸发器在盐水中蒸发行为的影响,并为高效太阳能驱动的界面脱盐提供了见解。
更新日期:2022-11-11
中文翻译:
用于高效太阳能驱动界面脱盐的霍夫迈斯特效应增强水凝胶水化化学
太阳能驱动的水蒸发技术由于其高能量转换效率,在缓解全球水资源短缺方面具有巨大潜力。降低水的蒸发焓是提高太阳能驱动海水淡化性能的关键。在此,通过简单的物理交联方法制备了一种高度水化的水凝胶(PMH)网络,该网络由作为光热材料的改性针状焦和作为可水化基质的聚乙烯醇(PVA)组成。当利用 PMH 作为 3.5 wt% NaCl 溶液的蒸发器时,在一次阳光照射下可提供 3.18 kg m -2 h -1的高蒸发率 ,出人意料地优于纯水(2.53 kg m -2 h -1). 更重要的是,PMH 显示出强大的脱盐耐久性,从而实现自清洁系统。进一步的研究表明,离液 Cl -调节了 PMH 在盐水根中的出色蒸发性能,其中 Cl -可以调节 PMH 中 PVA 的水化化学并抑制相关结晶度,从而有助于增加中间水含量和盐水的汽化焓降低。这项工作首先仔细研究了 Hofmeister 效应对 PMH 蒸发器在盐水中蒸发行为的影响,并为高效太阳能驱动的界面脱盐提供了见解。