当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong and Ultra-Tough Supramolecular Hydrogel Enabled by Strain-Induced Microphase Separation
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-11-09 , DOI: 10.1002/adfm.202210395
Jiayu Wu 1, 2 , Zhixing Zhang 3 , Zhenyuan Wu 4 , Desheng Liu 2 , Xingxing Yang 1 , Yixian Wang 5 , Xin Jia 1 , Xin Xu 1 , Pan Jiang 2 , Xiaolong Wang 1, 2
Affiliation  

Architected hydrogels are widely used in biomedicine, soft robots, and flexible electronics while still possess big challenges in strong toughness, and shape modeling. Here, inspired with the universal hydrogen bonding interactions in biological systems, a strain-induced microphase separation path toward achieving the printable, tough supramolecular polymer hydrogels by hydrogen bond engineering is developed. Specifically, it subtly designs and fabricates the poly (N-acryloylsemicarbazide-co-acrylic acid) hydrogels with high hydrogen bond energy by phase conversion induced hydrogen bond reconstruction. The resultant hydrogels exhibited the unique strain-induced microphase separation behavior, resulting in the excellent strong toughness with, for example, an ultimate stress of 9.1 ± 0.3 MPa, strain levels of 1020 ± 126%, toughness of 33.7 ± 6.6 MJ m−3, and fracture energy of 171.1 ± 34.3 kJ m−2. More importantly, the hydrogen bond engineered supramolecular hydrogels possess dynamic shape memory character, i.e shape fixing at low temperature while recovery after heating. As the proof of concept, the tailored hydrogel stents are readily manufactured by 3D printing, which showed good biocompatibility, load-bearing and drug elution, being beneficial for the biomedical applications. It is believed that the present 3D printing of the architected dynamic hydrogels with ultrahigh toughness can broaden their applications.

中文翻译:

由应变诱导微相分离实现的强韧超分子水凝胶

结构化水凝胶广泛应用于生物医学、软体机器人和柔性电子产品,但在强韧性和形状建模方面仍面临巨大挑战。在这里,受生物系统中普遍的氢键相互作用的启发,开发了一种通过氢键工程实现可打印、坚韧的超分子聚合物水凝胶的应变诱导微相分离途径。具体来说,它通过相转化诱导氢键重构巧妙地设计和制造了具有高氢键能的聚(N-丙烯酰氨基脲-共聚-丙烯酸)水凝胶。所得水凝胶表现出独特的应变诱导微相分离行为,从而具有出色的强韧性,例如,极限应力为 9.1 ± 0.3 MPa,应变水平为 1020 ± 126%,韧性为 33.7 ± 6.6 MJ·m-3,断裂能为171.1 ± 34.3 kJ m -2。更重要的是,氢键工程超分子水凝胶具有动态形状记忆特性,即在低温下形状固定,加热后恢复。作为概念验证,定制的水凝胶支架很容易通过 3D 打印制造,具有良好的生物相容性、承载性和药物洗脱性,有利于生物医学应用。据信,目前具有超高韧性的结构化动态水凝胶的 3D 打印可以拓宽它们的应用。
更新日期:2022-11-09
down
wechat
bug