Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Triggered Self-Assembly of Peptide Nanoparticles into Nanofibers in Living Cells through Molecular Conformation Changes and H-Bond Interactions
ACS Nano ( IF 15.8 ) Pub Date : 2022-11-10 , DOI: 10.1021/acsnano.2c07895 Si Sun 1 , Hong-Wen Liang 2 , Hao Wang 2 , Quanming Zou 1
ACS Nano ( IF 15.8 ) Pub Date : 2022-11-10 , DOI: 10.1021/acsnano.2c07895 Si Sun 1 , Hong-Wen Liang 2 , Hao Wang 2 , Quanming Zou 1
Affiliation
Controlled self-assembly has attracted extensive interest in biological and nanotechnological applications. Enzymatic or biocatalytic triggered self-assembly is widely used for the diagnostic and prognostic marker in different pathologies because of their nanostructures and biological effects. However, it remains a great challenge to control the self-assembly of peptides in living cells with a high degree of spatial and temporal precision. Here we demonstrate a light-triggered platform that enables spatiotemporal control of self-assembly from nanoparticles into nanofibers in living cells through subtle molecular conformational changes and internal H-bonding interactions. The platform contained 3-methylene-2-(quinolin-8-yl) isoindolin-1-one, which acts as the light-controlled unit to disrupt the hydrophilic/lipophilic balance through the change of molecular conformation, and a peptide that can be a faster recombinant to assemble via H-bonding interactions. The process has good biocompatibility because it does not involve waste generation or oxygen consumption; moreover, the assembly rate constant was fast and up to 0.17 min–1. It is applied to the regulation of molecular assembly in living cells. As such, our findings demonstrate that light-triggered controllable assembly can be applied for initiative regulating cellular behaviors in living systems.
中文翻译:
通过分子构象变化和氢键相互作用,光触发肽纳米颗粒自组装成活细胞中的纳米纤维
受控自组装引起了生物和纳米技术应用的广泛兴趣。由于其纳米结构和生物学效应,酶促或生物催化触发的自组装被广泛用作不同病理学中的诊断和预后标记。然而,以高度的空间和时间精度控制活细胞中肽的自组装仍然是一个巨大的挑战。在这里,我们展示了一个光触发平台,该平台能够通过细微的分子构象变化和内部氢键相互作用,对活细胞中从纳米粒子到纳米纤维的自组装进行时空控制。该平台包含 3-methylene-2-(quinolin-8-yl) isoindolin-1-one,它充当光控单元,通过改变分子构象来破坏亲水/亲油平衡,以及一种可以通过氢键相互作用更快重组组装的肽。该工艺不产生废物,不消耗氧气,具有良好的生物相容性;此外,组装速率常数很快,可达0.17 min–1。它应用于调节活细胞中的分子组装。因此,我们的研究结果表明,光触发的可控组装可用于主动调节生命系统中的细胞行为。
更新日期:2022-11-10
中文翻译:
通过分子构象变化和氢键相互作用,光触发肽纳米颗粒自组装成活细胞中的纳米纤维
受控自组装引起了生物和纳米技术应用的广泛兴趣。由于其纳米结构和生物学效应,酶促或生物催化触发的自组装被广泛用作不同病理学中的诊断和预后标记。然而,以高度的空间和时间精度控制活细胞中肽的自组装仍然是一个巨大的挑战。在这里,我们展示了一个光触发平台,该平台能够通过细微的分子构象变化和内部氢键相互作用,对活细胞中从纳米粒子到纳米纤维的自组装进行时空控制。该平台包含 3-methylene-2-(quinolin-8-yl) isoindolin-1-one,它充当光控单元,通过改变分子构象来破坏亲水/亲油平衡,以及一种可以通过氢键相互作用更快重组组装的肽。该工艺不产生废物,不消耗氧气,具有良好的生物相容性;此外,组装速率常数很快,可达0.17 min–1。它应用于调节活细胞中的分子组装。因此,我们的研究结果表明,光触发的可控组装可用于主动调节生命系统中的细胞行为。