这项工作首次评估了不同羧酸(硬脂酸和辛酸)的碳链大小和结晶温度(60、120 和 180 °C)对结构、质地、形态、基本和机理性质的影响。介孔氧化铝(meso-Al 2 O 3)合成中的反应。关于传统上用于合成介观-Al 2 O 3的结构导向剂 (SDA)(例如强酸、强碱和合成聚合物),羧酸是无毒、可生物降解的低商业价值化合物,可以从可再生资源中获得。进行的物理化学表征,包括低角度和高角度 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FT-IR)、热分析 (TG/DTG)、氮吸附-解吸、程序升温解吸二氧化碳 (CO 2 -TPD)、扫描电子显微镜 (SEM) 和透射 (TEM) 证实了介孔结构 γ-Al 2 O 3的形成. 没有观察到孔隙组织,但虫洞状结构提供了一个相互连接的通道系统。在 180 °C 合成的介孔氧化铝显示出在 60 °C 合成的材料的结构、质地(孔体积增加 68% 和孔径增加 36%)和基本性能(约 19%)的增加。这可归因于在水解-缩合反应期间羧酸与铝的配位程度增加。此外,硬脂酸(较长碳链羧酸)在胶束聚集过程中容易弯曲,导致孔径比辛酸(较短碳链酸)小 33%。因此,meso-Al 2 O 3的最佳条件在 180 °C 下合成,并使用辛酸 (CAP-180 °C) 作为 SDA。CO 2吸附的结果表明,在所研究的整个温度范围(10 – 50 °C)内,所有材料都与伪一级模型具有更好的相关性,这表明通过界面气固的扩散(外部扩散)是限制步骤的吸附过程。吸附剂 CAP-180°C 表现出高吸附容量(大气压下 10°C 时约为 134.45 mg CO2 /g ads),经过 8 次吸附-解吸循环后稳定性提高,达到优于其他 meso-Al 2 O 3的吸附容量.
"点击查看英文标题和摘要"
MESOPOROUS ALUMINAS SYNTHESIS USING CARBOXYLIC ACIDS TO ENHANCE PERFORMANCE IN CO2 ADSORPTION
This work evaluated for the first time the effect of carbon chain size of different carboxylic acids (stearic and caprylic acid) and crystallization temperatures (60, 120, and 180 °C) on the structural, textural, morphological, basic, and mechanism properties of reaction in the synthesis of mesoporous aluminas (meso-Al2O3). Regarding the structure-directing agents (SDA) traditionally used in the synthesis of meso-Al2O3 (i.g. strong acids, strong bases, and synthetic polymers), carboxylic acids are non-toxic, biodegradable compounds of low commercial value, and can be obtained from renewable sources. The physical-chemical characterizations performed, including low and high-angle X-ray diffractometry (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis (TG/DTG), nitrogen adsorption-desorption, temperature-programmed desorption of carbon dioxide (CO2-TPD), scanning electron microscopy (SEM), and transmission (TEM), confirmed the formation of mesostructured γ-Al2O3. No pore organization was observed, but a system of interconnected channels was provided by the wormhole-like structure. Mesoporous aluminas synthesized at 180 °C showed an increase in structural, textural (higher of 68% in pore volume and 36% in pore diameter), and basic properties (around 19%) about materials synthesized at 60 °C. This can be attributed to the increased degree of coordination of the carboxylic acid with aluminum during the hydrolysis-condensation reactions. Furthermore, stearic acid (longer carbon chain carboxylic acid) tends to bend during micellar aggregation, leading to pore sizes 33% smaller than caprylic acid (shorter carbon chain acid). Therefore, the best condition for meso-Al2O3 synthesis was obtained at 180 °C and using caprylic acid (CAP-180°C) as SDA. The results of CO2 adsorption showed that all materials correlate better with the pseudo-first order model in the entire temperature range studied (10 – 50 °C), suggesting that diffusion through the interface gas-solid (external diffusion) is the limiting step of the adsorption process. The adsorbent CAP-180°C showed high adsorption capacity (around 134.45 mgCO2/gads at 10 °C under atmospheric pressure) and elevated stability after eight cycles of adsorption-desorption, reaching adsorption capacity superior to other meso-Al2O3.