当前位置: X-MOL 学术Nat. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing
Nature Electronics ( IF 33.7 ) Pub Date : 2022-11-07 , DOI: 10.1038/s41928-022-00859-y
Tanmoy Sarkar , Katharina Lieberth , Aristea Pavlou , Thomas Frank , Volker Mailaender , Iain McCulloch , Paul W. M. Blom , Fabrizio Torriccelli , Paschalis Gkoupidenis

The effective mimicry of neurons is key to the development of neuromorphic electronics. However, artificial neurons are not typically capable of operating in biological environments, which limits their ability to interface with biological components and to offer realistic neuronal emulation. Organic artificial neurons based on conventional circuit oscillators have been created, but they require many elements for their implementation. Here we report an organic artificial neuron that is based on a compact nonlinear electrochemical element. The artificial neuron can operate in a liquid and is sensitive to the concentration of biological species (such as dopamine or ions) in its surroundings. The system offers in situ operation and spiking behaviour in biologically relevant environments—including typical physiological and pathological concentration ranges (5–150 mM)—and with ion specificity. Small-amplitude (1–150 mV) electrochemical oscillations and noise in the electrolytic medium shape the neuronal dynamics, whereas changes in ionic (≥2% over the physiological baseline) and biomolecular (≥ 0.1 mM dopamine) concentrations modulate the neuronal excitability. We also create biohybrid interfaces in which an artificial neuron functions synergistically and in real time with epithelial cell biological membranes.



中文翻译:

用于原位神经形态传感和生物接口的有机人工脉冲神经元

神经元的有效模仿是神经形态电子学发展的关键。然而,人工神经元通常不能在生物环境中运行,这限制了它们与生物成分交互并提供逼真的神经元模拟的能力。已经创建了基于传统电路振荡器的有机人工神经元,但它们的实现需要许多元素。在这里,我们报告了一种基于紧凑非线性电化学元件的有机人工神经元。人工神经元可以在液体中运行,并且对其周围生物种类(例如多巴胺或离子)的浓度敏感。该系统在生物学相关环境中提供原位操作和尖峰行为——包括典型的生理和病理浓度范围(5-150 mM)——并具有离子特异性。电解介质中的小幅度(1-150 mV)电化学振荡和噪声塑造了神经元动力学,而离子(≥2% 超过生理基线)和生物分子(≥ 0.1 mM 多巴胺)浓度的变化调节了神经元的兴奋性。我们还创建了生物混合界面,其中人工神经元与上皮细胞生物膜实时协同发挥作用。而离子(≥2% 超过生理基线)和生物分子(≥ 0.1 mM 多巴胺)浓度的变化调节神经元的兴奋性。我们还创建了生物混合界面,其中人工神经元与上皮细胞生物膜实时协同发挥作用。而离子(≥2% 超过生理基线)和生物分子(≥ 0.1 mM 多巴胺)浓度的变化调节神经元的兴奋性。我们还创建了生物混合界面,其中人工神经元与上皮细胞生物膜实时协同发挥作用。

更新日期:2022-11-08
down
wechat
bug