Nature Communications ( IF 14.7 ) Pub Date : 2022-11-04 , DOI: 10.1038/s41467-022-34286-6 Xue Yang 1 , Lin Cheng 1 , Zhaoming Zhang 1 , Jun Zhao 1 , Ruixue Bai 1 , Zhewen Guo 1 , Wei Yu 1 , Xuzhou Yan 1
Integrating individual microscopic motion to perform tasks in macroscopic sale is common in living organisms. However, developing artificial materials in which molecular-level motions could be amplified to behave macroscopically is still challenging. Herein, we present a class of mechanically interlocked networks (MINs) carrying densely rotaxanated backbones as a model system to understand macroscopic mechanical properties stemmed from the integration and amplification of intramolecular motion of the embedded [2]rotaxane motifs. On the one hand, the motion of mechanical bonds introduces the original dangling chains into the network, and the synergy of numerous such microscopic motions leads to an expansion of entire network, imparting good stretchability and puncture resistance to the MINs. On the other hand, the dissociation of host−guest recognition and subsequent sliding motion represent a peculiar energy dissipation pathway, whose integration and amplification result in the bulk materials with favorable toughness and damping capacity. Thereinto, we develop a continuous stress-relaxation method to elucidate the microscopic motion of [2]rotaxane units, which contributes to the understanding of the relationship between cumulative microscopic motions and amplified macroscopic mechanical performance.
中文翻译:
机械互锁网络中高密度 [2] 轮烷的综合微观运动放大
集成个体微观运动以执行宏观销售中的任务在生物体中很常见。然而,开发可以放大分子水平运动以表现出宏观行为的人造材料仍然具有挑战性。在此,我们提出了一类携带密集轮烷主链的机械互锁网络 (MIN) 作为模型系统,以了解宏观机械特性源于嵌入的 [2] 轮烷基序的分子内运动的整合和放大。一方面,机械键的运动将原来的悬垂链引入网络,众多此类微观运动的协同作用导致整个网络的扩展,赋予 MIN 良好的拉伸性和抗穿刺性。另一方面,主客体识别的解离和随后的滑动运动代表了一种特殊的能量耗散途径,其整合和放大导致块体材料具有良好的韧性和阻尼能力。其中,我们开发了一种连续应力松弛方法来阐明 [2] 轮烷单元的微观运动,这有助于理解累积微观运动与放大的宏观力学性能之间的关系。