Nano Research ( IF 9.5 ) Pub Date : 2022-11-02 , DOI: 10.1007/s12274-022-5004-0 Yinuo Li , Anjun Hu , Xingdong Gan , Miao He , Jun Zhu , Wei Chen , Yin Hu , Tianyu Lei , Fei Li , Yaoyao Li , Yuxin Fan , Fan Wang , Mingjie Zhou , An Wen , Baihai Li
The implementation of a robust artificial solid electrolyte interphase (ASEI) to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries. Despite of devoted efforts in tailoring components of ASEI, the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet. Herein, we show that the lithium plating/striping behaviors can be substantially enhanced (over 900 h with an overpotential of less than 20 mV at 1 mA·cm−2 in Li∣Li symmetric cells and 146 cycles in anode-free cells) by regulating the heterogeneous interphases. This favorable ASEI composed of LiF and Li3N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings. Further, the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally. Li3N has high adsorption energy and low ion diffusion barrier, which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites. Both the substrate and LiF are interfacially stable with high electron tunneling barriers, preventing the electrolyte decomposition and parasitic reactions. Finally, the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow, providing a stable environment for long-term cycling of lithium metal batteries.
中文翻译:
原位异相界面的协同定制锂沉积
采用稳健的人工固体电解质界面(ASEI)替代不稳定的天然 SEI,可以调节锂的沉积行为,避免锂金属电池中枝晶渗透带来的安全隐患。尽管在定制 ASEI 的组件方面付出了巨大的努力,但异质界面内界面协同作用的内在机制尚未得到很好的阐明。在此,我们表明锂电镀/剥离行为可以通过以下方式显着增强(在 Li∣Li 对称电池中,在 1 mA·cm -2下超过 900 小时,过电位小于 20 mV,在无阳极电池中循环 146 次)调节异质相间。这种由 LiF 和 Li 3 N 组分组成的有利 ASEI 可以原位由大规模制造的氟化氮化硼涂层在循环过程中产生。此外,在理论上和实验上探索了 ASEI 中每个异质组件的协同作用。Li 3 N具有较高的吸附能和较低的离子扩散势垒,有利于锂离子的迁移,避免其局部聚集形成枝晶。基板和 LiF 都具有高电子隧穿势垒的界面稳定性,可防止电解质分解和寄生反应。最后,氮化硼的高刚度还确保锂枝晶在生长后受到抑制,为锂金属电池的长期循环提供稳定的环境。