当前位置: X-MOL 学术Adv. Opt. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intense infrared lasers for strong-field science
Advances in Optics and Photonics ( IF 25.2 ) Pub Date : 2022-11-01 , DOI: 10.1364/aop.454797
Zenghu Chang 1 , Li Fang , Vladimir Fedorov 2 , Chase Geiger 1 , Shambhu Ghimire 3 , Christian Heide 3 , Nobuhisa Ishii 4 , Jiro Itatani 4 , Chandrashekhar Joshi 5 , Yuki Kobayashi 3 , Prabhat Kumar 6 , Alphonse Marra 1 , Sergey Mirov 2 , Irina Petrushina 7 , Mikhail Polyanskiy 8 , David A. Reis 3 , Sergei Tochitsky 5 , Sergey Vasilyev 9 , Lifeng Wang 1 , Yi Wu 1 , Fangjie Zhou 1
Affiliation  

The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.

中文翻译:

用于强场科学的强红外激光器

1980 年代啁啾脉冲放大和 1990 年代飞秒钛蓝宝石激光器的出现使强激光-物质相互作用物理学取得了变革性进展。虽然大多数实验是在 0.8-1 μm 的有限近红外范围内进行的,但理论预测,许多物理现象(例如气体中的高次谐波产生)在延长高能截止范围方面有利于长激光波长。在开发 1.6-2 μm 范围内的少周期、载流子包络相位稳定、高峰值功率激光器方面取得了重大进展,为水窗阿秒 X 射线源奠定了基础。甚至可以使用更长波长的激光,它们适用于研究相对论体系中的光丝化、高次谐波产生和激光-等离子体相互作用。长波长激光器适用于包括半导体在内的多种固体材料的亚带隙强场激发。在强场极限下,块状晶体也会产生高次谐波。在这篇综述中,我们首先介绍了强场物理中几个重要的波长标度定律,然后描述了最近在短波(1.4-3 μm)、中波(3-8 μm)和长波(8-15 μm)方面的突破) 红外激光技术,最后提供这些新型激光器的强场应用实例。一些宽带超快红外激光器将对医学、环保和国防产生深远的影响,因为它们的波长覆盖了水吸收波段、分子指纹区域以及大气红外透明窗口。
更新日期:2022-11-01
down
wechat
bug